MCP cover image
See in Github
2025-04-09

Servidor de protocolo de contexto del modelo (MCP) para la API de OCR de Mistral

1

Github Watches

3

Github Forks

10

Github Stars

MCP Mistral OCR

smithery badge

An MCP server that provides OCR capabilities using Mistral AI's OCR API. This server can process both local files and URLs, supporting images and PDFs.

Features

  • Process local files (images and PDFs) using Mistral's OCR
  • Process files from URLs with explicit file type specification
  • Support for multiple file formats (JPG, PNG, PDF, etc.)
  • Results saved as JSON files with timestamps
  • Docker containerization
  • UV package management

Environment Variables

  • MISTRAL_API_KEY: Your Mistral AI API key
  • OCR_DIR: Directory path for local file processing. Inside the container, this is always mapped to /data/ocr

Installation

Installing via Smithery

To install Mistral OCR for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @everaldo/mcp/mistral-crosswalk --client claude

Using Docker

  1. Build the Docker image:
docker build -t mcp-mistral-ocr .
  1. Run the container:
docker run -e MISTRAL_API_KEY=your_api_key -e OCR_DIR=/data/ocr -v /path/to/local/files:/data/ocr mcp-mistral-ocr

Local Development

  1. Install UV package manager:
pip install uv
  1. Create and activate virtual environment:
uv venv
source .venv/bin/activate  # On Unix
# or
.venv\Scripts\activate  # On Windows
  1. Install dependencies:
uv pip install .

Claude Desktop Configuration

Add this configuration to your claude_desktop_config.json:

{
  "mcpServers": {
    "mistral-ocr": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-e",
        "MISTRAL_API_KEY",
        "-e",
        "OCR_DIR",
        "-v",
        "C:/path/to/your/files:/data/ocr",
        "mcp-mistral-ocr:latest"
      ],
      "env": {
        "MISTRAL_API_KEY": "<YOUR_MISTRAL_API_KEY>",
        "OCR_DIR": "C:/path/to/your/files"
      }
    }
  }
}

Available Tools

1. process_local_file

Process a file from the configured OCR_DIR directory.

{
    "name": "process_local_file",
    "arguments": {
        "filename": "document.pdf"
    }
}

2. process_url_file

Process a file from a URL. Requires explicit file type specification.

{
    "name": "process_url_file",
    "arguments": {
        "url": "https://example.com/document",
        "file_type": "image"  // or "pdf"
    }
}

Output

OCR results are saved in JSON format in the output directory inside OCR_DIR. Each result file is named using the following format:

  • For local files: {original_filename}_{timestamp}.json
  • For URLs: {url_filename}_{timestamp}.json or url_document_{timestamp}.json if no filename is found in the URL

The timestamp format is YYYYMMDD_HHMMSS.

Supported File Types

  • Images: JPG, JPEG, PNG, GIF, WebP
  • Documents: PDF and other document formats supported by Mistral OCR

Limitations

  • Maximum file size: 50MB (enforced by Mistral API)
  • Maximum document pages: 1000 (enforced by Mistral API)

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • Mintplex-Labs
  • La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.

  • modelcontextprotocol
  • Servidores de protocolo de contexto modelo

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • n8n-io
  • Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.

  • OffchainLabs
  • Implementación de la prueba de estaca Ethereum

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.

    Reviews

    2 (1)
    Avatar
    user_AAM1qjrR
    2025-04-16

    I've been using mcp-mistral-ocr developed by everaldo, and it's a game-changer for my OCR needs! The tool is incredibly efficient and accurate in converting images and scanned documents into editable text. Its seamless integration and user-friendly interface make it stand out. Highly recommend checking it out at https://github.com/everaldo/mcp-mistral-ocr!