MCP-Mistral-OocR
Servidor de protocolo de contexto del modelo (MCP) para la API de OCR de Mistral
1
Github Watches
3
Github Forks
10
Github Stars
MCP Mistral OCR
An MCP server that provides OCR capabilities using Mistral AI's OCR API. This server can process both local files and URLs, supporting images and PDFs.
Features
- Process local files (images and PDFs) using Mistral's OCR
- Process files from URLs with explicit file type specification
- Support for multiple file formats (JPG, PNG, PDF, etc.)
- Results saved as JSON files with timestamps
- Docker containerization
- UV package management
Environment Variables
-
MISTRAL_API_KEY: Your Mistral AI API key -
OCR_DIR: Directory path for local file processing. Inside the container, this is always mapped to/data/ocr
Installation
Installing via Smithery
To install Mistral OCR for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @everaldo/mcp/mistral-crosswalk --client claude
Using Docker
- Build the Docker image:
docker build -t mcp-mistral-ocr .
- Run the container:
docker run -e MISTRAL_API_KEY=your_api_key -e OCR_DIR=/data/ocr -v /path/to/local/files:/data/ocr mcp-mistral-ocr
Local Development
- Install UV package manager:
pip install uv
- Create and activate virtual environment:
uv venv
source .venv/bin/activate # On Unix
# or
.venv\Scripts\activate # On Windows
- Install dependencies:
uv pip install .
Claude Desktop Configuration
Add this configuration to your claude_desktop_config.json:
{
"mcpServers": {
"mistral-ocr": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"MISTRAL_API_KEY",
"-e",
"OCR_DIR",
"-v",
"C:/path/to/your/files:/data/ocr",
"mcp-mistral-ocr:latest"
],
"env": {
"MISTRAL_API_KEY": "<YOUR_MISTRAL_API_KEY>",
"OCR_DIR": "C:/path/to/your/files"
}
}
}
}
Available Tools
1. process_local_file
Process a file from the configured OCR_DIR directory.
{
"name": "process_local_file",
"arguments": {
"filename": "document.pdf"
}
}
2. process_url_file
Process a file from a URL. Requires explicit file type specification.
{
"name": "process_url_file",
"arguments": {
"url": "https://example.com/document",
"file_type": "image" // or "pdf"
}
}
Output
OCR results are saved in JSON format in the output directory inside OCR_DIR. Each result file is named using the following format:
- For local files:
{original_filename}_{timestamp}.json - For URLs:
{url_filename}_{timestamp}.jsonorurl_document_{timestamp}.jsonif no filename is found in the URL
The timestamp format is YYYYMMDD_HHMMSS.
Supported File Types
- Images: JPG, JPEG, PNG, GIF, WebP
- Documents: PDF and other document formats supported by Mistral OCR
Limitations
- Maximum file size: 50MB (enforced by Mistral API)
- Maximum document pages: 1000 (enforced by Mistral API)
相关推荐
I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Advanced software engineer GPT that excels through nailing the basics.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Converts Figma frames into front-end code for various mobile frameworks.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Espejo dehttps: //github.com/agentience/practices_mcp_server
Una lista curada de servidores de protocolo de contexto del modelo (MCP)
Reviews
user_AAM1qjrR
I've been using mcp-mistral-ocr developed by everaldo, and it's a game-changer for my OCR needs! The tool is incredibly efficient and accurate in converting images and scanned documents into editable text. Its seamless integration and user-friendly interface make it stand out. Highly recommend checking it out at https://github.com/everaldo/mcp-mistral-ocr!