Cover image
servidor MCP-BigQuery
Private

servidor MCP-BigQuery

Try Now
2025-04-03

Un servidor de protocolo de contexto modelo (MCP) que proporciona acceso seguro de solo lectura a los conjuntos de datos BigQuery. Permite que los modelos de idiomas grandes (LLM) consulten y analicen los datos de manera segura a través de una interfaz estandarizada.

3 years

Works with Finder

2

Github Watches

14

Github Forks

47

Github Stars

BigQuery MCP Server

smithery badge

BigQuery MCP Server Logo

What is this? 🤔

This is a server that lets your LLMs (like Claude) talk directly to your BigQuery data! Think of it as a friendly translator that sits between your AI assistant and your database, making sure they can chat securely and efficiently.

Quick Example

You: "What were our top 10 customers last month?"
Claude: *queries your BigQuery database and gives you the answer in plain English*

No more writing SQL queries by hand - just chat naturally with your data!

How Does It Work? 🛠️

This server uses the Model Context Protocol (MCP), which is like a universal translator for AI-database communication. While MCP is designed to work with any AI model, right now it's available as a developer preview in Claude Desktop.

Here's all you need to do:

  1. Set up authentication (see below)
  2. Add your project details to Claude Desktop's config file
  3. Start chatting with your BigQuery data naturally!

What Can It Do? 📊

  • Run SQL queries by just asking questions in plain English
  • Access both tables and materialized views in your datasets
  • Explore dataset schemas with clear labeling of resource types (tables vs views)
  • Analyze data within safe limits (1GB query limit by default)
  • Keep your data secure (read-only access)

Quick Start 🚀

Prerequisites

  • Node.js 14 or higher
  • Google Cloud project with BigQuery enabled
  • Either Google Cloud CLI installed or a service account key file
  • Claude Desktop (currently the only supported LLM interface)

Option 1: Quick Install via Smithery (Recommended)

To install BigQuery MCP Server for Claude Desktop automatically via Smithery, run this command in your terminal:

npx @smithery/cli install @ergut/mcp-bigquery-server --client claude

The installer will prompt you for:

  • Your Google Cloud project ID
  • BigQuery location (defaults to us-central1)

Once configured, Smithery will automatically update your Claude Desktop configuration and restart the application.

Option 2: Manual Setup

If you prefer manual configuration or need more control:

  1. Authenticate with Google Cloud (choose one method):

    • Using Google Cloud CLI (great for development):
      gcloud auth application-default login
      
    • Using a service account (recommended for production):
      # Save your service account key file and use --key-file parameter
      # Remember to keep your service account key file secure and never commit it to version control
      
  2. Add to your Claude Desktop config Add this to your claude_desktop_config.json:

    • Basic configuration:

      {
        "mcpServers": {
          "bigquery": {
            "command": "npx",
            "args": [
              "-y",
              "@ergut/mcp-bigquery-server",
              "--project-id",
              "your-project-id",
              "--location",
              "us-central1"
            ]
          }
        }
      }
      
    • With service account:

      {
        "mcpServers": {
          "bigquery": {
            "command": "npx",
            "args": [
              "-y",
              "@ergut/mcp-bigquery-server",
              "--project-id",
              "your-project-id",
              "--location",
              "us-central1",
              "--key-file",
              "/path/to/service-account-key.json"
            ]
          }
        }
      }
      
  3. Start chatting! Open Claude Desktop and start asking questions about your data.

Command Line Arguments

The server accepts the following arguments:

  • --project-id: (Required) Your Google Cloud project ID
  • --location: (Optional) BigQuery location, defaults to 'us-central1'
  • --key-file: (Optional) Path to service account key JSON file

Example using service account:

npx @ergut/mcp-bigquery-server --project-id your-project-id --location europe-west1 --key-file /path/to/key.json

Permissions Needed

You'll need one of these:

  • roles/bigquery.user (recommended)
  • OR both:
    • roles/bigquery.dataViewer
    • roles/bigquery.jobUser

Developer Setup (Optional) 🔧

Want to customize or contribute? Here's how to set it up locally:

# Clone and install
git clone https://github.com/ergut/mcp-bigquery-server
cd mcp-bigquery-server
npm install

# Build
npm run build

Then update your Claude Desktop config to point to your local build:

{
  "mcpServers": {
    "bigquery": {
      "command": "node",
      "args": [
        "/path/to/your/clone/mcp-bigquery-server/dist/index.js",
        "--project-id",
        "your-project-id",
        "--location",
        "us-central1",
        "--key-file",
        "/path/to/service-account-key.json"
      ]
    }
  }
}

Current Limitations ⚠️

  • MCP support is currently only available in Claude Desktop (developer preview)
  • Connections are limited to local MCP servers running on the same machine
  • Queries are read-only with a 1GB processing limit
  • While both tables and views are supported, some complex view types might have limitations

Support & Resources 💬

License 📝

MIT License - See LICENSE file for details.

Author ✍️

Salih Ergüt

Sponsorship

This project is proudly sponsored by:

Version History 📋

See CHANGELOG.md for updates and version history.

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

  • jae-jae
  • Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • patruff
  • Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo

  • av
  • Ejecute sin esfuerzo LLM Backends, API, frontends y servicios con un solo comando.

  • chongdashu
  • Habilite clientes asistentes de IA como Cursor, Windsurf y Claude Desktop para controlar el motor irreal a través del lenguaje natural utilizando el Protocolo de contexto del modelo (MCP).

  • wgpsec
  • 一款基于各大企业信息 API 的工具 , 解决在遇到的各种针对国内企业信息收集难题。一键收集控股公司 解决在遇到的各种针对国内企业信息收集难题。一键收集控股公司 ICP 备案、 Aplicación 、小程序、微信公众号等信息聚合导出。支持 MCP 接入

    Reviews

    5 (1)
    Avatar
    user_QZIP2Nnl
    2025-04-17

    As a dedicated user of mcp applications, I must say that the mcp-bigquery-server by ergut is incredibly impressive. This tool greatly simplifies querying BigQuery databases and makes data handling much more efficient. The seamless integration and straightforward setup make it a must-have for any data professional. Highly recommended!