MCP cover image
See in Github
2025-04-03

一个学习存储库,探索了使用免费和开源模型的检索型生成(RAG)和多云处理(MCP)服务器集成。

1

Github Watches

0

Github Forks

0

Github Stars

RAG-MCP Pipeline Research

A comprehensive research project exploring Retrieval-Augmented Generation (RAG) and Multi-Cloud Processing (MCP) server integration using free and open-source models.

Project Overview

This repository serves as a structured learning and research path for understanding how to integrate Large Language Models (LLMs) with external services through MCP servers, with a focus on practical business applications such as accounting software integration (e.g., QuickBooks).

🌟 Key Features

  • No paid API keys required - uses free Hugging Face models
  • Run everything locally without external dependencies
  • Comprehensive step-by-step documentation for beginners
  • Practical examples with working code

Research Modules

Module 0: Prerequisites

Establish a solid foundation before diving into specific areas:

  • Programming & Tools: Python, Git/GitHub, Docker
  • Basic Concepts: Machine learning, RESTful APIs, cloud services
  • AI & LLM Foundations: Understanding transformers, RAG, and prompt engineering
  • Development environment setup with free models

Module 1: AI Modeling & LLM Integration

  • Understanding different LLM architectures and capabilities
  • Integration methods with various LLM providers (Hugging Face, open-source models)
  • Fine-tuning strategies for domain-specific tasks
  • Evaluation metrics and performance optimization

Module 2: Hosting & Deployment Strategies for AI

  • Scalable infrastructure for AI applications
  • Cost optimization techniques
  • Model serving options (serverless, container-based, dedicated instances)
  • Monitoring and observability for LLM applications

Module 3: Deep Dive into MCP Servers

  • Architecture and components of MCP servers
  • Building secure API gateways for external service integration
  • Authentication and authorization patterns
  • Command execution protocols and standardization

Module 4: API Integration & Command Execution

  • Integration with business software APIs (QuickBooks, etc.)
  • Data transformation and normalization
  • Error handling and resilience strategies
  • Testing and validation methodologies

Module 5: RAG (Retrieval Augmented Generation) & Alternative Strategies

  • Vector database selection and optimization
  • Document processing pipelines
  • Hybrid retrieval approaches
  • Alternative augmentation strategies for LLMs

Project Goals

  1. Gain comprehensive understanding of RAG and MCP server concepts
  2. Build prototype integrations with popular business software
  3. Develop a framework for AI-powered data entry and processing
  4. Create documentation and best practices for future implementations

Getting Started

  1. Clone this repository to your local machine

    git clone https://github.com/your-username/rag-mcp-pipeline-research.git
    cd rag-mcp-pipeline-research
    
  2. Run the setup script to prepare your environment

    # Navigate to the project directory
    python src/setup_environment.py
    
  3. Activate the virtual environment

    # On Windows
    venv\Scripts\activate
    
    # On macOS/Linux
    source venv/bin/activate
    
  4. Start with Module 0: Prerequisites

  5. Progress through each module sequentially

  6. Complete the practical exercises in each section

Why Free Models?

This project intentionally uses free, open-source models from Hugging Face instead of commercial APIs like OpenAI for several reasons:

  1. Accessibility - Anyone can follow along without financial barriers
  2. Educational Value - Better understanding of how models work internally
  3. Privacy - All processing happens locally on your machine
  4. Flexibility - Easier to customize and fine-tune models for specific needs
  5. Future-Proofing - Skills transfer to any model, not tied to specific providers

For production applications, you may choose to use commercial APIs for better performance, but the concepts learned here apply universally.

License

MIT

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • Lists Tailwind CSS classes in monospaced font

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • modelcontextprotocol
  • 模型上下文协议服务器

  • jae-jae
  • MCP服务器使用剧作《无头浏览器》获取网页内容。

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

    Reviews

    1 (1)
    Avatar
    user_CzUsYZ4V
    2025-04-17

    I've been using rag-mcp-pipeline-research by dzikrisyairozi and it's been a game-changer for my projects. The pipeline is robust, easy to implement, and the documentation is very clear. It efficiently handles multi-component processes, making my research workflow seamless. Highly recommend checking it out! https://github.com/dzikrisyairozi/rag-mcp-pipeline-research