MCP cover image
See in Github
2025-03-11

1

Github Watches

1

Github Forks

0

Github Stars

AWS Bedrock Logs MCP

A command-line interface and API for analyzing AWS Bedrock usage and logs through Anthropic's MCP (Model Control Protocol).

Overview

This tool provides a convenient way to analyze AWS Bedrock model invocation logs using Anthropic's Claude model as an interactive interface. It functions as an MCP server that exposes AWS CloudWatch Logs API functionality to Claude, allowing you to query and analyze your Bedrock usage data in natural language.

Features

  • Model Usage Analysis: View detailed statistics about Bedrock model usage and token consumption
  • User-based Analytics: Analyze usage patterns and costs by user
  • Daily Usage Reports: Track daily usage trends and model invocations
  • Token Consumption Metrics: Monitor input, completion, and total token usage
  • Interactive Interface: Use Claude to query your Bedrock usage data through natural language

Requirements

  • Python 3.13+
  • AWS credentials with CloudWatch Logs access
  • Anthropic API access (for Claude integration)

Installation

  1. Install uv:

    # On macOS and Linux
    curl -LsSf https://astral.sh/uv/install.sh | sh
    
    # On Windows
    powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
    
  2. Clone this repository:

    git clone https://github.com/dheerajoruganty/aws-bedrock-logs-mcp-server.git
    cd aws-bedrock-logs-mcp-server
    
  3. Set up the Python virtual environment and install dependencies:

    uv venv && source .venv/bin/activate && uv pip sync pyproject.toml
    

    For Windows:

    uv venv && .venv\Scripts\activate && uv pip sync pyproject.toml
    
  4. Configure your AWS credentials:

    mkdir -p ~/.aws
    # Set up your credentials in ~/.aws/credentials and ~/.aws/config
    

Usage

Starting the Server

Run the server using:

python cloudwatch_mcp_server.py

By default, the server uses stdio transport for communication with MCP clients.

Claude Desktop Configuration

Configure this tool with Claude Desktop:

{
  "mcpServers": {
    "aws_bedrock_logs": {
      "command": "uv",
      "args": [
          "--directory",
          "/path/to/aws-bedrock-logs-mcp",
          "run",
          "cloudwatch_mcp_server.py"
      ]
    }
  }
}

Make sure to replace the directory path with the actual path to your repository on your system.

Available Tools

The server exposes the following tools that Claude can use:

  1. get_bedrock_logs_df: Retrieve raw Bedrock invocation logs as a pandas DataFrame
  2. get_model_usage_stats: Get usage statistics grouped by model
  3. get_user_usage_stats: Get usage statistics grouped by user
  4. get_daily_usage_stats: Get daily usage statistics and trends

Example Queries

Once connected to Claude through an MCP-enabled interface, you can ask questions like:

  • "Show me the Bedrock usage stats for the last 7 days"
  • "What's the average token consumption by model?"
  • "Who are the top users of Bedrock in terms of total tokens?"
  • "Give me a daily breakdown of model invocations"

Development

Project Structure

  • cloudwatch_mcp_server.py: Main server implementation with MCP tools
  • pyproject.toml: Project dependencies and metadata
  • Dockerfile: Container definition for deployments

Dependencies

Key dependencies include:

  • boto3: AWS SDK for Python
  • mcp[cli]: Anthropic's Model Control Protocol
  • pandas: Data manipulation and analysis
  • pydantic: Data validation using Python type annotations

License

MIT License

Acknowledgments

  • This tool uses Anthropic's MCP framework
  • Powered by AWS CloudWatch Logs API
  • Built with FastMCP for server implementation

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • Mintplex-Labs
  • La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.

  • modelcontextprotocol
  • Servidores de protocolo de contexto modelo

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • n8n-io
  • Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.

  • OffchainLabs
  • Implementación de la prueba de estaca Ethereum

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.

  • open-webui
  • Interfaz de IA fácil de usar (admite Ollama, Operai API, ...)

    Reviews

    5 (1)
    Avatar
    user_yCW6A48T
    2025-04-16

    I've been using aws-bedrock-logs-mcp-server by dheerajoruganty, and it has significantly streamlined our log management process. Its seamless integration and robust performance have made it an indispensable tool in our AWS infrastructure. Highly recommend it for anyone looking to enhance their server logging capabilities! Check it out on GitHub.