Cover image
Try Now
2025-02-26

Servidor MCP para la API de perplejidad.

3 years

Works with Finder

0

Github Watches

12

Github Forks

47

Github Stars

Perplexity Chat MCP Server

The Perplexity MCP Server provides a Python-based interface to the Perplexity API, offering tools for querying responses, maintaining chat history, and managing conversations. It supports model configuration via environment variables and stores chat data locally. Built with Python and setuptools, it's designed for integration with development environments.

The MCP Server is desined to mimick how users interact with the Perplexity Chat on their browser by allowing your models to ask questions, continue conversations, and list all your chats.

smithery badge Release and Publish

Components

Tools

  • ask_perplexity: Request expert programming assistance through Perplexity. Focuses on coding solutions, error debugging, and technical explanations. Returns responses with source citations and alternative suggestions.
  • chat_perplexity: Maintains ongoing conversations with Perplexity AI. Creates new chats or continues existing ones with full history context. Returns chat ID for future continuation.
  • list_chats_perplexity: Lists all available chat conversations with Perplexity AI. Returns chat IDs, titles, and creation dates (displayed in relative time format, e.g., "5 minutes ago", "2 days ago"). Results are paginated with 50 chats per page.
  • read_chat_perplexity: Retrieves the complete conversation history for a specific chat. Returns the full chat history with all messages and their timestamps. No API calls are made to Perplexity - this only reads from local storage.

Key Features

  • Model Configuration via Environment Variable: Allows you to specify the Perplexity model using the PERPLEXITY_MODEL environment variable for flexible model selection.

    You can also specify PERPLEXITY_MODEL_ASK and PERPLEXITY_MODEL_CHAT to use different models for the ask_perplexity and chat_perplexity tools, respectively.

    These will override PERPLEXITY_MODEL. You can check which models are available on the Perplexity documentation.

  • Persistent Chat History: The chat_perplexity tool maintains ongoing conversations with Perplexity AI. Creates new chats or continues existing ones with full history context. Returns chat ID for future continuation.

  • Streaming Responses with Progress Reporting: Uses progress reporting to prevent timeouts on slow responses.

Quickstart

Prerequisites

Before using this MCP server, ensure you have:

  • Python 3.10 or higher
  • uvx package manager installed

Note: Installation instructions for uvx are available here.

Configuration for All Clients

To use this MCP server, configure your client with these settings (configuration method varies by client):

"mcpServers": {
  "mcp-perplexity": {
    "command": "uvx",
    "args": ["mcp-perplexity"],
    "env": {
      "PERPLEXITY_API_KEY": "your-api-key",
      "PERPLEXITY_MODEL": "sonar-pro",
      "DB_PATH": "chats.db"
    }
  }
}

Environment Variables

Configure the MCP Perplexity server using the following environment variables:

Variable Description Default Value Required
PERPLEXITY_API_KEY Your Perplexity API key None Yes
PERPLEXITY_MODEL Default model for interactions sonar-pro No
PERPLEXITY_MODEL_ASK Specific model for ask_perplexity tool Uses PERPLEXITY_MODEL No
PERPLEXITY_MODEL_CHAT Specific model for chat_perplexity tool Uses PERPLEXITY_MODEL No
DB_PATH Path to store chat history database chats.db No
WEB_UI_ENABLED Enable or disable web UI false No
WEB_UI_PORT Port for web UI 8050 No
WEB_UI_HOST Host for web UI 127.0.0.1 No
DEBUG_LOGS Enable detailed logging false No

Using Smithery CLI

npx -y @smithery/cli@latest run @daniel-lxs/mcp-perplexity --config "{\"perplexityApiKey\":\"pplx-abc\",\"perplexityModel\":\"sonar-pro\"}"

Usage

ask_perplexity

The ask_perplexity tool is used for specific questions, this tool doesn't maintain a chat history, every request is a new chat.

The tool will return a response from Perplexity AI using the PERPLEXITY_MODEL_ASK model if specified, otherwise it will use the PERPLEXITY_MODEL model.

chat_perplexity

The chat_perplexity tool is used for ongoing conversations, this tool maintains a chat history. A chat is identified by a chat ID, this ID is returned by the tool when a new chat is created. Chat IDs look like this: wild-horse-12.

This tool is useful for debugging, research, and any other task that requires a chat history.

The tool will return a response from Perplexity AI using the PERPLEXITY_MODEL_CHAT model if specified, otherwise it will use the PERPLEXITY_MODEL model.

list_chats_perplexity

Lists all available chat conversations. It returns a paginated list of chats, showing the chat ID, title, and creation time (in relative format). You can specify the page number using the page argument (defaults to 1, with 50 chats per page).

read_chat_perplexity

Retrieves the complete conversation history for a given chat_id. This tool returns all messages in the chat, including timestamps and roles (user or assistant). This tool does not make any API calls to Perplexity; it only reads from the local database.

Web UI

The MCP Perplexity server now includes a web interface for easier interaction and management of chats.

Features

  • Interactive chat interface
  • Chat history management
  • Real-time message display

Screenshots

Chat List View

image

Chat Interface

image

Accessing the Web UI

When WEB_UI_ENABLED is set to true, the web UI will be available at http://WEB_UI_HOST:WEB_UI_PORT.

By default, this is http://127.0.0.1:8050.

Development

This project uses setuptools for development and builds. To get started:

  1. Create a virtual environment:

    python -m venv .venv
    source .venv/bin/activate  # On Linux/macOS
    # or
    .venv\Scripts\activate  # On Windows
    
  2. Install the project in editable mode with all dependencies:

    pip install -e .
    
  3. Build the project:

    python -m build
    

The virtual environment will contain all required dependencies for development.

Contributing

This project is open to contributions. Please see the CONTRIBUTING.md file for more information.

License

This project is licensed under the MIT License. See the LICENSE file for details.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • Daren White
  • A supportive coach for mastering all Spanish tenses.

  • J. DE HARO OLLE
  • Especialista en juegos de palabras en varios idiomas.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • albert tan
  • Japanese education, creating tailored learning experiences.

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • huahuayu
  • Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.

  • deemkeen
  • Controle su MBOT2 con un combo de potencia: MQTT+MCP+LLM

  • zhaoyunxing92
  • 本项目是一个钉钉 MCP (Protocolo del conector de mensajes )服务 , 提供了与钉钉企业应用交互的 API 接口。项目基于 Go 语言开发 支持员工信息查询和消息发送等功能。 支持员工信息查询和消息发送等功能。

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

    Reviews

    2 (1)
    Avatar
    user_tGbSApdu
    2025-04-16

    I've been using mcp-perplexity for a while now, and it's truly impressive. Daniel-lxs has developed a tool that's not only efficient but also easy to integrate into existing projects. The documentation is clear, and the product's functionality saves me a lot of time and effort. Highly recommend checking it out at https://github.com/daniel-lxs/mcp-perplexity!