Confidential guide on numerology and astrology, based of GG33 Public information

AI-Customer-Support-Bot-MCP-server
3 years
Works with Finder
1
Github Watches
1
Github Forks
1
Github Stars
AI Customer Support Bot - MCP Server
A Model Context Protocol (MCP) server that provides AI-powered customer support using Cursor AI and Glama.ai integration.
Features
- Real-time context fetching from Glama.ai
- AI-powered response generation with Cursor AI
- Batch processing support
- Priority queuing
- Rate limiting
- User interaction tracking
- Health monitoring
- MCP protocol compliance
Prerequisites
- Python 3.8+
- PostgreSQL database
- Glama.ai API key
- Cursor AI API key
Installation
- Clone the repository:
git clone <repository-url>
cd <repository-name>
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Create a
.env
file based on.env.example
:
cp .env.example .env
- Configure your
.env
file with your credentials:
# API Keys
GLAMA_API_KEY=your_glama_api_key_here
CURSOR_API_KEY=your_cursor_api_key_here
# Database
DATABASE_URL=postgresql://user:password@localhost/customer_support_bot
# API URLs
GLAMA_API_URL=https://api.glama.ai/v1
# Security
SECRET_KEY=your_secret_key_here
# MCP Server Configuration
SERVER_NAME="AI Customer Support Bot"
SERVER_VERSION="1.0.0"
API_PREFIX="/mcp"
MAX_CONTEXT_RESULTS=5
# Rate Limiting
RATE_LIMIT_REQUESTS=100
RATE_LIMIT_PERIOD=60
# Logging
LOG_LEVEL=INFO
- Set up the database:
# Create the database
createdb customer_support_bot
# Run migrations (if using Alembic)
alembic upgrade head
Running the Server
Start the server:
python app.py
The server will be available at http://localhost:8000
API Endpoints
1. Root Endpoint
GET /
Returns basic server information.
2. MCP Version
GET /mcp/version
Returns supported MCP protocol versions.
3. Capabilities
GET /mcp/capabilities
Returns server capabilities and supported features.
4. Process Request
POST /mcp/process
Process a single query with context.
Example request:
curl -X POST http://localhost:8000/mcp/process \
-H "Content-Type: application/json" \
-H "X-MCP-Auth: your-auth-token" \
-H "X-MCP-Version: 1.0" \
-d '{
"query": "How do I reset my password?",
"priority": "high",
"mcp_version": "1.0"
}'
5. Batch Processing
POST /mcp/batch
Process multiple queries in a single request.
Example request:
curl -X POST http://localhost:8000/mcp/batch \
-H "Content-Type: application/json" \
-H "X-MCP-Auth: your-auth-token" \
-H "X-MCP-Version: 1.0" \
-d '{
"queries": [
"How do I reset my password?",
"What are your business hours?",
"How do I contact support?"
],
"mcp_version": "1.0"
}'
6. Health Check
GET /mcp/health
Check server health and service status.
Rate Limiting
The server implements rate limiting with the following defaults:
- 100 requests per 60 seconds
- Rate limit information is included in the health check endpoint
- Rate limit exceeded responses include reset time
Error Handling
The server returns structured error responses in the following format:
{
"code": "ERROR_CODE",
"message": "Error description",
"details": {
"timestamp": "2024-02-14T12:00:00Z",
"additional_info": "value"
}
}
Common error codes:
-
RATE_LIMIT_EXCEEDED
: Rate limit exceeded -
UNSUPPORTED_MCP_VERSION
: Unsupported MCP version -
PROCESSING_ERROR
: Error processing request -
CONTEXT_FETCH_ERROR
: Error fetching context from Glama.ai -
BATCH_PROCESSING_ERROR
: Error processing batch request
Development
Project Structure
.
├── app.py # Main application file
├── database.py # Database configuration
├── middleware.py # Middleware (rate limiting, validation)
├── models.py # Database models
├── mcp_config.py # MCP-specific configuration
├── requirements.txt # Python dependencies
└── .env # Environment variables
Adding New Features
- Update
mcp_config.py
with new configuration options - Add new models in
models.py
if needed - Create new endpoints in
app.py
- Update capabilities endpoint to reflect new features
Security
- All MCP endpoints require authentication via
X-MCP-Auth
header - Rate limiting is implemented to prevent abuse
- Database credentials should be kept secure
- API keys should never be committed to version control
Monitoring
The server provides health check endpoints for monitoring:
- Service status
- Rate limit usage
- Connected services
- Processing times
Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
For support, please create an issue in the repository or contact the development team.
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
I find academic articles and books for research and literature reviews.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.
Un bot de chat de IA para equipos pequeños y medianos, que apoyan modelos como Deepseek, Open AI, Claude y Gemini. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 Claude 、 Géminis 等模型。
Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)
Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo
🔍 Habilitar asistentes de IA para buscar y acceder a la información del paquete PYPI a través de una interfaz MCP simple.
Reviews

user_gRUvwmSz
The AI-Customer-Support-Bot--MCP-Server by ChiragPatankar has been a game-changer for our customer support team. It efficiently handles queries and provides accurate responses, reducing our workload significantly. The setup was straightforward, and the performance has been superb. Highly recommend for businesses looking to improve their customer support operations. You can check it out here: https://github.com/ChiragPatankar/AI-Customer-Support-Bot---MCP-Server