Cover image
Try Now
2025-04-04

Un poderoso sistema de gestión de contextos listo para la producción para modelos de idiomas grandes (LLM). Construido con CHROMADB y tecnologías de incrustación modernas, proporciona capacidades de memoria persistentes y específicas de proyectos que mejoran la calidad de comprensión y respuesta de su IA.

3 years

Works with Finder

1

Github Watches

1

Github Forks

3

Github Stars

# MCP Memory Bank Server 🧠

A powerful, context management system for Large Language Models (LLMs). Built with ChromaDB and modern embedding technologies, it provides persistent, project-specific memory capabilities that enhance your AI's understanding and response quality.

✨ Key Features

  • 🚀 High Performance: Optimized vector storage with ChromaDB
  • 🔒 Project Isolation: Separate context spaces for different projects
  • 🔍 Smart Search: Both semantic and keyword-based search capabilities
  • 🔄 Real-time Updates: Dynamic content management with automatic chunking
  • 🎯 Precise Recall: Advanced embedding generation via @xenova/transformers
  • 🐳 Easy Deployment: Docker-ready with persistent storage

🏗️ System Architecture

graph TB
    Client[Client Application]
    MCP[MCP Protocol Layer]
    Tools[Tool Registration]
    PS[Project Service]
    ES[Embedding Service]
    SS[Search Service]
    DS[Database Service]
    ChromaDB[(ChromaDB)]
    
    Client -->|API Calls| MCP
    MCP -->|Register| Tools
    Tools -->|Project Ops| PS
    Tools -->|Search Ops| SS
    PS -->|Store/Retrieve| DS
    SS -->|Query| DS
    SS -->|Generate| ES
    DS -->|Vector Ops| ChromaDB
    
    subgraph Core Services
        PS
        ES
        SS
        DS
    end
    
    subgraph External Dependencies
        ChromaDB
    end
    
    style Client fill:#f9f,stroke:#333,stroke-width:2px
    style MCP fill:#bbf,stroke:#333,stroke-width:2px
    style ChromaDB fill:#bfb,stroke:#333,stroke-width:2px
    style Core Services fill:#fff,stroke:#333,stroke-width:2px,stroke-dasharray: 5 5

🚀 Quick Start

Prerequisites

  • Node.js (v18+ LTS recommended)
  • npm (v9+ recommended)
  • Docker Desktop (latest stable)
  • 2GB+ free RAM
  • 1GB+ free disk space

One-Command Setup

# Clone, install, and run in development mode
git clone https://github.com/your-org/mcp-memory-bank.git && cd mcp-memory-bank && npm install && docker-compose up -d && npm run dev

🔄 Project Lifecycle

stateDiagram-v2
    [*] --> ProjectCreation: memoryBank_createProject
    ProjectCreation --> Initialization: memoryBank_initializeProject
    
    state Initialization {
        [*] --> CreateStandardFiles
        CreateStandardFiles --> ProjectBrief: projectbrief.md
        CreateStandardFiles --> ActiveContext: activeContext.md
        CreateStandardFiles --> ProductContext: productContext.md
        CreateStandardFiles --> SystemPatterns: systemPatterns.md
        CreateStandardFiles --> TechContext: techContext.md
        CreateStandardFiles --> Progress: progress.md
    }
    
    Initialization --> ContentManagement
    
    state ContentManagement {
        [*] --> FileOperations
        FileOperations --> UpdateFile: memoryBank_updateFile
        FileOperations --> GetFile: memoryBank_getFile
        FileOperations --> ListFiles: memoryBank_listFiles
        FileOperations --> DeleteFile: memoryBank_deleteFile
        
        state Search {
            [*] --> SemanticSearch
            [*] --> KeywordSearch
        }
        
        FileOperations --> Search: memoryBank_search
    }
    
    ContentManagement --> ProjectDeletion: memoryBank_deleteProject
    ProjectDeletion --> [*]

📚 API Documentation

Core Tools

Project Management

  • memoryBank_createProject: Create isolated project spaces
  • memoryBank_initializeProject: Create standard Memory Bank files in a project
  • memoryBank_deleteProject: Clean up project data
  • memoryBank_listProjects: View all projects
  • memoryBank_getProjectByName: Fetch project details

Content Management

  • memoryBank_updateFile: Store/update content with auto-chunking
  • memoryBank_getFile: Retrieve full content
  • memoryBank_listFiles: View stored files
  • memoryBank_deleteFile: Remove content
  • memoryBank_search: Semantic/keyword search

🔧 Configuration

Environment Variables

CHROMADB_URL=http://localhost:8000
MCP_MEMBANK_EMBEDDING_MODEL=Xenova/all-MiniLM-L6-v2
# Optional: Controls the logging verbosity. Defaults to 'info'.
# Possible values: 'debug', 'info', 'warn', 'error'
LOG_LEVEL=info

🐛 Troubleshooting

Common Issues

  1. ChromaDB Connection Failed

    # Check if container is running
    docker ps | grep chroma
    # Restart if needed
    docker-compose restart
    
  2. Memory Issues

    • Ensure Docker has sufficient memory allocation
    • Consider reducing batch sizes in heavy operations

🤝 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📈 Performance Considerations

  • Vector operations scale with embedding dimensions
  • Batch operations for better throughput
  • Use appropriate chunk sizes (default: 512 tokens)
  • Consider index optimization for large datasets

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.


Built with ❤️ by the bsmi021

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • jae-jae
  • Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.

  • HiveNexus
  • Un bot de chat de IA para equipos pequeños y medianos, que apoyan modelos como Deepseek, Open AI, Claude y Gemini. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 Claude 、 Géminis 等模型。

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • patruff
  • Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo

    Reviews

    4 (1)
    Avatar
    user_EXWkdIqA
    2025-04-16

    I've been using the mcp-memory-bank by bsmi021, and it's exceeded all my expectations. The interface is user-friendly and the memory management is incredibly efficient. I highly recommend this to anyone looking for a reliable memory bank solution. The GitHub repository is well-documented, making it easy to integrate and use. Great job, bsmi021!