I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

mcp-kafka
Un servidor MCP para Apache Kafka y su ecosistema.
1
Github Watches
1
Github Forks
3
Github Stars
Overview
mcp-kafka
is a server-side implementation of the model context protocol (MCP) for Apache Kafka. It allows language models (LLM/SLM) to reliably interact with Kafka & its ecosystem, including Kafka Connect, Burrow, & Cruise Control.
NOTE: This is a WIP, changes/potential errors are expected.
Features
The server supports capabilities based on the core Kafka APIs, excluding Streams (for now), along with the Burrow & Cruise Control REST APIs.
TODO
- Use
asyncio
andaiohttp
. - Set env config values in the data class.
- Finish admin/consumer/producer API support.
- Support Burrow API.
- Support CC API.
- Service + integration tests.
- Publish to PyPI (
uv pip install mcp-kafka
) - Test Dockerfile & push to Dockerhub (
docker pull bkpowers/mcp-kafka
) - Usage/config/deployment options + demo in README.
- Consider Strimzi/kcctl integrations.
- Prompts with auto-complete support for certain resources/tools.
MCP Capabilities
Tools
Kafka
-
consume
-
produce
-
describe_kafka_cluster
-
describe_kafka_topics
-
describe_kafka_consumer_groups
-
describe_kafka_delegation_tokens
-
describe_kafka_log_dirs
-
describe_kafka_configs
-
describe_kafka_acls
Kafka Connect
-
get_kafka_connect_cluster_info
-
get_kafka_connect_config
-
get_kafka_connect_connectors
-
get_kafka_connect_connector_plugins
-
get_kafka_connect_loggers
Burrow
-
burrow_healthcheck
-
burrow_list_clusters
-
burrow_describe_cluster
-
burrow_list_consumers_with_group_detail
-
burrow_list_topics
-
burrow_check_consumer_group_status
Cruise Control
-
cruise_control_get_state
-
cruise_control_get_kafka_cluster_load
-
cruise_control_get_partition_resource_utilization_and_load
-
cruise_control_get_partition_and_replica_state
-
cruise_control_get_optimization_proposals
-
cruise_control_get_user_request_result
Resources
- topic, connector, consumer group
Prompts
Usage / Configuration
- Claude Desktop
- Cursor
- Windsurf
- Langchain MCP adapter
- Azure OpenAI
Environment Variables
Supported APIs are (currently) enabled by the presence of their specific environment variable. If none are present, the server responds as empty. If 1 or more variables are present, then the respective tools are also present.
-
KAFKA_BOOTSTRAP_SERVERS
: Kafka Admin, Consumer, Producer APIs -
KAFKA_CONNECT_API_URL
: Kafka Connect API -
KAFKA_BURROW_API_URL
: Burrow API -
KAFKA_CRUISE_CONTROL_API_URL
: Cruise Control API
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Espejo dehttps: //github.com/agentience/practices_mcp_server
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Reviews

user_dfV12LLL
As a dedicated user of mcp applications, I can't recommend mcp-kafka highly enough! Brandon Powers has done an excellent job creating a robust and efficient Kafka connector that’s both easy to integrate and highly reliable. The documentation on the GitHub page is thorough and user-friendly. If you're in need of a Kafka solution, this is definitely worth checking out.