I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

Servidor de mCP de rápido
Un servidor MCP de reconocimiento de voz de alto rendimiento basado en Whisper más rápido, que proporciona capacidades eficientes de transcripción de audio.
3 years
Works with Finder
1
Github Watches
1
Github Forks
2
Github Stars
Whisper Speech Recognition MCP Server
中文文档
A high-performance speech recognition MCP server based on Faster Whisper, providing efficient audio transcription capabilities.
Features
- Integrated with Faster Whisper for efficient speech recognition
- Batch processing acceleration for improved transcription speed
- Automatic CUDA acceleration (if available)
- Support for multiple model sizes (tiny to large-v3)
- Output formats include VTT subtitles, SRT, and JSON
- Support for batch transcription of audio files in a folder
- Model instance caching to avoid repeated loading
- Dynamic batch size adjustment based on GPU memory
Installation
Dependencies
- Python 3.10+
- faster-whisper>=0.9.0
- torch==2.6.0+cu126
- torchaudio==2.6.0+cu126
- mcp[cli]>=1.2.0
Installation Steps
- Clone or download this repository
- Create and activate a virtual environment (recommended)
- Install dependencies:
pip install -r requirements.txt
PyTorch Installation Guide
Install the appropriate version of PyTorch based on your CUDA version:
-
CUDA 12.6:
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu126
-
CUDA 12.1:
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121
-
CPU version:
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cpu
You can check your CUDA version with nvcc --version
or nvidia-smi
.
Usage
Starting the Server
On Windows, simply run start_server.bat
.
On other platforms, run:
python whisper_server.py
Configuring Claude Desktop
-
Open the Claude Desktop configuration file:
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
-
Add the Whisper server configuration:
{
"mcpServers": {
"whisper": {
"command": "python",
"args": ["D:/path/to/whisper_server.py"],
"env": {}
}
}
}
- Restart Claude Desktop
Available Tools
The server provides the following tools:
- get_model_info - Get information about available Whisper models
- transcribe - Transcribe a single audio file
- batch_transcribe - Batch transcribe audio files in a folder
Performance Optimization Tips
- Using CUDA acceleration significantly improves transcription speed
- Batch processing mode is more efficient for large numbers of short audio files
- Batch size is automatically adjusted based on GPU memory size
- Using VAD (Voice Activity Detection) filtering improves accuracy for long audio
- Specifying the correct language can improve transcription quality
Local Testing Methods
- Use MCP Inspector for quick testing:
mcp dev whisper_server.py
-
Use Claude Desktop for integration testing
-
Use command line direct invocation (requires mcp[cli]):
mcp run whisper_server.py
Error Handling
The server implements the following error handling mechanisms:
- Audio file existence check
- Model loading failure handling
- Transcription process exception catching
- GPU memory management
- Batch processing parameter adaptive adjustment
Project Structure
-
whisper_server.py
: Main server code -
model_manager.py
: Whisper model loading and caching -
audio_processor.py
: Audio file validation and preprocessing -
formatters.py
: Output formatting (VTT, SRT, JSON) -
transcriber.py
: Core transcription logic -
start_server.bat
: Windows startup script
License
MIT
Acknowledgements
This project was developed with the assistance of these amazing AI tools and models:
- GitHub Copilot - AI pair programmer
- Trae - Agentic AI coding assistant
- Cline - AI-powered terminal
- DeepSeek - Advanced AI model
- Claude-3.7-Sonnet - Anthropic's powerful AI assistant
- Gemini-2.0-Flash - Google's multimodal AI model
- VS Code - Powerful code editor
- Whisper - OpenAI's speech recognition model
- Faster Whisper - Optimized Whisper implementation
Special thanks to these incredible tools and the teams behind them.
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Converts Figma frames into front-end code for various mobile frameworks.
Therapist adept at identifying core issues and offering practical advice with images.
Advanced software engineer GPT that excels through nailing the basics.
A medical specialist offering assistance grounded in clinical guidelines. Disclaimer: This is intended for research and is NOT safe for clinical use!
A GPT designed to provide everyday financial advice and tools to Canadians, primarily inspired by the subreddit Personal Finance Canada.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Espejo de https: //github.com/suhail-ak-s/mcp-typesense-server
本项目是一个钉钉 MCP (Protocolo del conector de mensajes )服务 , 提供了与钉钉企业应用交互的 API 接口。项目基于 Go 语言开发 支持员工信息查询和消息发送等功能。 支持员工信息查询和消息发送等功能。
Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)
Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.
Reviews

user_7PpBm25g
I've been using the Fast-Whisper-MCP-Server by BigUncle, and it has completely revolutionized my workflow. The performance is incredible, and the server handles multiple clients effortlessly. The documentation is clear and comprehensive, making setup a breeze. Huge kudos to the author for creating such an efficient and user-friendly product! Highly recommended for anyone in need of a robust MCP server solution.