servicio MCP-Iceberg
Servidor MCP para interactuar con el catálogo de Apache Iceberg de Claude, habilitando Data Lake Discovery y Metadata Search a través de un aviso de LLM.
1
Github Watches
0
Github Forks
3
Github Stars
MCP Iceberg Catalog
A MCP (Model Context Protocol) server implementation for interacting with Apache Iceberg. This server provides a SQL interface for querying and managing Iceberg tables through Claude desktop.
Claude Desktop as your Iceberg Data Lake Catalog

How to Install in Claude Desktop
Installing via Smithery
To install MCP Iceberg Catalog for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @ahodroj/mcp-iceberg-service --client claude
-
Prerequisites
- Python 3.10 or higher
- UV package installer (recommended) or pip
- Access to an Iceberg REST catalog and S3-compatible storage
-
How to install in Claude Desktop Add the following configuration to
claude_desktop_config.json:
{
"mcpServers": {
"iceberg": {
"command": "uv",
"args": [
"--directory",
"PATH_TO_/mcp-iceberg-service",
"run",
"mcp-server-iceberg"
],
"env": {
"ICEBERG_CATALOG_URI" : "http://localhost:8181",
"ICEBERG_WAREHOUSE" : "YOUR ICEBERG WAREHOUSE NAME",
"S3_ENDPOINT" : "OPTIONAL IF USING S3",
"AWS_ACCESS_KEY_ID" : "YOUR S3 ACCESS KEY",
"AWS_SECRET_ACCESS_KEY" : "YOUR S3 SECRET KEY"
}
}
}
}
Design
Architecture
The MCP server is built on three main components:
-
MCP Protocol Handler
- Implements the Model Context Protocol for communication with Claude
- Handles request/response cycles through stdio
- Manages server lifecycle and initialization
-
Query Processor
- Parses SQL queries using
sqlparse - Supports operations:
- LIST TABLES
- DESCRIBE TABLE
- SELECT
- INSERT
- Parses SQL queries using
-
Iceberg Integration
- Uses
pyicebergfor table operations - Integrates with PyArrow for efficient data handling
- Manages catalog connections and table operations
- Uses
PyIceberg Integration
The server utilizes PyIceberg in several ways:
-
Catalog Management
- Connects to REST catalogs
- Manages table metadata
- Handles namespace operations
-
Data Operations
- Converts between PyIceberg and PyArrow types
- Handles data insertion through PyArrow tables
- Manages table schemas and field types
-
Query Execution
- Translates SQL to PyIceberg operations
- Handles data scanning and filtering
- Manages result set conversion
Further Implementation Needed
-
Query Operations
- Implement UPDATE operations
- Add DELETE support
- Support for CREATE TABLE with schema definition
- Add ALTER TABLE operations
- Implement table partitioning support
-
Data Types
- Support for complex types (arrays, maps, structs)
- Add timestamp with timezone handling
- Support for decimal types
- Add nested field support
-
Performance Improvements
- Implement batch inserts
- Add query optimization
- Support for parallel scans
- Add caching layer for frequently accessed data
-
Security Features
- Add authentication mechanisms
- Implement role-based access control
- Add row-level security
- Support for encrypted connections
-
Monitoring and Management
- Add metrics collection
- Implement query logging
- Add performance monitoring
- Support for table maintenance operations
-
Error Handling
- Improve error messages
- Add retry mechanisms for transient failures
- Implement transaction support
- Add data validation
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Take an adjectivised noun, and create images making it progressively more adjective!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Una lista curada de servidores de protocolo de contexto del modelo (MCP)
Reviews
user_pdqMRrCr
As a dedicated user of mcp-applications, I highly recommend the mcp-iceberg-service developed by ahodroj. This service offers outstanding features and seamless integration, making it a must-have for any project. The documentation provided on the GitHub link is clear and helpful, ensuring a smooth setup process. Overall, an excellent tool that demonstrates attention to detail and user needs. Check it out at https://github.com/ahodroj/mcp-iceberg-service.