
Memory-MCP-Serverv2 optimizado
Este es un proyecto personal para probar la capacidad de Claude AI de autoengrenar un código de servidor MCP para su propio uso.
1
Github Watches
2
Github Forks
1
Github Stars
Optimized Memory MCP Server v2
A high-performance Python-based Model Context Protocol (MCP) server implementation optimized for Claude Desktop integration. This server provides efficient memory management and robust infrastructure component tracking capabilities.
[!CAUTION] This project has been archived due to faulty project specifications and AI direction that led to endless looping behavior.
Overview
This MCP server implementation focuses on:
- Efficient memory management for large-scale infrastructure tracking
- Comprehensive resource and tool implementations following MCP patterns
- Full Claude Desktop compatibility
- SQLite-based persistent storage with connection pooling
- Robust error handling and resource cleanup
Features
-
MCP Resources
- Entity management (listing, retrieval, relationships)
- Provider resource tracking
- Ansible collection management
- Version tracking
- Full-text search capabilities
-
MCP Tools
- Entity creation and management
- Observation tracking
- Provider registration
- Ansible module integration
- Infrastructure analysis tools
-
Core Components
- FastMCP server implementation
- SQLite database with connection pooling
- Comprehensive error handling
- Automatic resource cleanup
- Extensive logging
Project Structure
.
├── src/
│ ├── resources/ # MCP resource implementations
│ ├── tools/ # MCP tool implementations
│ ├── db/ # Database management
│ ├── utils/ # Utility functions
│ └── server.py # Main server implementation
├── tests/
│ ├── resources/ # Resource tests
│ ├── tools/ # Tool tests
│ └── integration/ # Integration tests
├── docs/ # Documentation
├── migrations/ # Database migrations
└── requirements/ # Project dependencies
Requirements
- Python 3.13.1 or higher
- SQLite 3.x
- uvx server
Quick Start
See our Environment Setup Guide for detailed installation instructions.
Key steps:
- Clone and setup Python environment
- Install dependencies:
pip install -r requirements.txt
- Configure database:
export DATABASE_URL=sqlite:///path/to/db.db
- Initialize database:
alembic upgrade head
- Start server:
uvx run python -m src.main
Usage
-
Start the server:
uvx run python -m src.main
-
Configure Claude Desktop:
- Set MCP server URL to
http://localhost:8000
- Enable MCP protocol in Claude settings
- Set MCP server URL to
-
Verify connection:
curl http://localhost:8000/health
Development Setup
-
Install development dependencies:
pip install -r requirements-dev.txt
-
Set up pre-commit hooks:
pre-commit install
-
Run tests:
pytest
-
Check code quality:
flake8 mypy .
Contributing
- Fork the repository
- Create a feature branch
- Make your changes following our conventions
- Run tests and linting
- Submit a pull request
Documentation
- Environment Setup Guide - Installation and configuration
- MCP Usage Guide - Using MCP resources and tools
- API Documentation - API reference
- Configuration Guide - Server configuration
- Development Guide - Contributing guidelines
- Database Schema - Data model reference
- Troubleshooting Guide - Common issues and solutions
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Claude Desktop team for MCP protocol specifications
- Contributors to the FastMCP library
- SQLAlchemy team for database tooling
相关推荐
I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Advanced software engineer GPT that excels through nailing the basics.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Converts Figma frames into front-end code for various mobile frameworks.
This GPT assists in finding a top-rated business CPA - local or virtual. We account for their qualifications, experience, testimonials and reviews. Business operators provide a short description of your business, services wanted, and city or state.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Espejo dehttps: //github.com/agentience/practices_mcp_server
Una lista curada de servidores de protocolo de contexto del modelo (MCP)
Reviews

user_YvTrET1I
simctl-mcp by ambar is an excellent tool for anyone working with the Mobile Core Platform. The user interface is intuitive, and the functionality is robust, making it perfect for both beginners and advanced users. Highly recommend visiting the product link to discover its full potential: https://mcp.so/server/simctl-mcp/ambar.