Cover image
Try Now
2025-03-18

MCP Crew AI Server es un servidor liviano basado en Python diseñado para ejecutar, administrar y crear flujos de trabajo Crewai.

3 years

Works with Finder

1

Github Watches

2

Github Forks

5

Github Stars

CrewAI Logo

MCP Crew AI Server

MCP Crew AI Server is a lightweight Python-based server designed to run, manage and create CrewAI workflows. This project leverages the Model Context Protocol (MCP) to communicate with Large Language Models (LLMs) and tools such as Claude Desktop or Cursor IDE, allowing you to orchestrate multi-agent workflows with ease.

Features

  • Automatic Configuration: Automatically loads agent and task configurations from two YAML files (agents.yml and tasks.yml), so you don't need to write custom code for basic setups.
  • Command Line Flexibility: Pass custom paths to your configuration files via command line arguments (--agents and --tasks).
  • Seamless Workflow Execution: Easily run pre-configured workflows through the MCP run_workflow tool.
  • Local Development: Run the server locally in STDIO mode, making it ideal for development and testing.

Installation

There are several ways to install the MCP Crew AI server:

Option 1: Install from PyPI (Recommended)

pip install mcp-crew-ai

Option 2: Install from GitHub

pip install git+https://github.com/adam-paterson/mcp-crew-ai.git

Option 3: Clone and Install

git clone https://github.com/adam-paterson/mcp-crew-ai.git
cd mcp-crew-ai
pip install -e .

Requirements

  • Python 3.11+
  • MCP SDK
  • CrewAI
  • PyYAML

Configuration

  • agents.yml: Define your agents with roles, goals, and backstories.
  • tasks.yml: Define tasks with descriptions, expected outputs, and assign them to agents.

Example agents.yml:

zookeeper:
  role: Zookeeper
  goal: Manage zoo operations
  backstory: >
    You are a seasoned zookeeper with a passion for wildlife conservation...

Example tasks.yml:

write_stories:
  description: >
    Write an engaging zoo update capturing the day's highlights.
  expected_output: 5 engaging stories
  agent: zookeeper
  output_file: zoo_report.md

Usage

Once installed, you can run the MCP CrewAI server using either of these methods:

Standard Python Command

mcp-crew-ai --agents path/to/agents.yml --tasks path/to/tasks.yml

Using UV Execution (uvx)

For a more streamlined experience, you can use the UV execution command:

uvx mcp-crew-ai --agents path/to/agents.yml --tasks path/to/tasks.yml

Or run just the server directly:

uvx mcp-crew-ai-server

This will start the server using default configuration from environment variables.

Command Line Options

  • --agents: Path to the agents YAML file (required)
  • --tasks: Path to the tasks YAML file (required)
  • --topic: The main topic for the crew to work on (default: "Artificial Intelligence")
  • --process: Process type to use (choices: "sequential" or "hierarchical", default: "sequential")
  • --verbose: Enable verbose output
  • --variables: JSON string or path to JSON file with additional variables to replace in YAML files
  • --version: Show version information and exit

Advanced Usage

You can also provide additional variables to be used in your YAML templates:

mcp-crew-ai --agents examples/agents.yml --tasks examples/tasks.yml --topic "Machine Learning" --variables '{"year": 2025, "focus": "deep learning"}'

These variables will replace placeholders in your YAML files. For example, {topic} will be replaced with "Machine Learning" and {year} with "2025".

Contributing

Contributions are welcome! Please open issues or submit pull requests with improvements, bug fixes, or new features.

Licence

This project is licensed under the MIT Licence. See the LICENSE file for details.

Happy workflow orchestration!

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Beniyam Berhanu
  • Therapist adept at identifying core issues and offering practical advice with images.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • OffchainLabs
  • Implementación de la prueba de estaca Ethereum

  • huahuayu
  • Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.

  • deemkeen
  • Controle su MBOT2 con un combo de potencia: MQTT+MCP+LLM

    Reviews

    5 (1)
    Avatar
    user_fgVCwbjC
    2025-04-15

    The MCP Documentation Server by esakrissa is an exceptional tool for managing and accessing documentation effortlessly. Its user-friendly interface and efficient performance make it indispensable for developers. Highly recommended! Check it out here: https://mcp.so/server/mcp-doc/esakrissa