MCP cover image

Agrupación y priorización de múltiples límites

1

Github Watches

3

Github Forks

8

Github Stars

Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining

This repository stores our experimental codes and part of the simulated datasets for paper `Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining'. MCP is short for our proposed sampling method Multiple-Boundary Clustering and Prioritization.

Dataset:

Part of the datasets lies in the folder 'dataset'. Because some of our simulated test datasets exceed GitHub's file size limit of 100.00 MB, we can only upload part of our datasets in file '/mnist'.

The operational details of simulated test datasets are listed in the README under the folder 'dataset'.

Main experimental codes

You can easily implement our method and 5 baseline methods by yourself or modifying this code.

The main experimental codes are samedist_mnist_retrain.py, samedist_cifar_retrain.py, samedist_svhn_retrain.py. You can modify the list variables 'baselines'(methods) and 'operators'(simulated dataset) to run what you prefer.

baselines =['MCP','LSA','DSA','CES','AAL','SRS']

operators =['fgsm','jsma','bim-a','bim-b','cw-l2','scale','rotation','translation','shear','brightness','contrast']

Baseline methods

MCP. Our method "MCP" is implemented in the "samedist_***_retrain.py" as the function "select_my_optimize".

LSA/DSA. You can directly invoke the functions "fetch_lsa" and "fetch_dsa" from "/LSA_DSA/sa.py" which is downloaded online from the paper "Guiding Deep Learning System Testing Using Surprise Adequacy". These functions can help you get the SA value of each input. The higher the value of SA is, the corresponding test case is more surprise to the DNN under testing. So we select the subset of test cases with higher corresponding SAs.

CES. You can directly invoke the functions "conditional_sample" from "CES/condition.py" which is downloaded online from the git. The original codes have no external interface. In order to call these codes conveniently, we rewrite an interface function, but the internal code and logic about sampling completely reuse their code.

AAL. This approach is written by Matlab. We have write a individual README in the file "AAL" along with all the codes and our experimental setups and results. For short, you can run MATLAB programs and get the intermediate results stored in mnist_finalResults, cifar_finalResults, svhn_finalResults. Then you can run it in our python codes just as the other baseline methods.

SRS. This method is implemented in the "samedist_***_retrain.py" as the function "select_rondom".

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • Mintplex-Labs
  • La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • n8n-io
  • Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.

  • open-webui
  • Interfaz de IA fácil de usar (admite Ollama, Operai API, ...)

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.

  • metorial
  • Versiones contenedores de cientos de servidores MCP 📡 🧠

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

    Reviews

    5 (1)
    Avatar
    user_f425oVz8
    2025-04-18

    As a dedicated user of MCP, I must say it's an incredibly useful tool developed by actionabletest. Its seamless integration and user-friendly interface make it a joy to use. From navigating the start URL to accessing comprehensive documentation on GitHub, MCP offers a robust experience that caters to both beginners and advanced users. It's a must-have for anyone seeking efficiency and effectiveness in their applications. Highly recommended!