MCP cover image
See in Github
2025-04-05

Postgres MCP server

1

Github Watches

0

Github Forks

3

Github Stars

MCP PostgreSQL Demo

A FastMCP server that enables LLMs to connect and interact with PostgreSQL databases. This project demonstrates how to use the Model Context Protocol (MCP) to allow Language Models to query and explore database schemas and tables.

Features

  • Schema Exploration: Retrieve metadata about database schemas
  • Table Inspection: Get detailed information about table structures
  • Database Querying: Execute SQL queries against the database
  • YAML Formatting: Results are returned in YAML format for easy consumption by LLMs

Resources

The server exposes the following MCP resources:

  • database://{schema} - Get information about all tables in a schema
  • database://{schema}/tables/{table} - Get detailed information about a specific table

Tools

  • query_database - Execute SQL queries against the database (SELECT queries only)

Prompts

The server includes the following predefined prompts:

  • prompt_schema_description - Ask for a description of a database schema
  • prompt_table_description - Ask for a description of a specific table
  • prompt_query_database - Ask for data from a specific table

Prerequisites

  • Python 3.12 or higher
  • PostgreSQL database
  • UV package manager (recommended)

Installation

  1. Clone the repository:

    git clone <repository-url>
    cd mcp-demo
    
  2. Create a virtual environment:

    python -m venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
  3. Install UV (if not already installed):

    pip install uv
    
  4. Install dependencies with UV:

    uv sync
    
  5. Configure environment variables:

    • Copy .env.example to .env
    • Update the values according to your PostgreSQL configuration

Configuration

The application is configured using environment variables:

Variable Description Default
APP_NAME Application name mcp-demo
DB_HOST PostgreSQL host localhost
DB_PORT PostgreSQL port 5432
DB_USER PostgreSQL username postgres
DB_PASSWORD PostgreSQL password postgres
DB_NAME PostgreSQL database name postgres

Usage

  1. First, uncomment the run function in src/main.py by removing the comment from these lines at the bottom of the file:

    # if __name__ == "__main__":
    #     print("Starting FastMCP server...")
    #     mcp.run()
    
  2. Start the FastMCP server:

    python -m src.main
    
  3. The server will be available for LLMs to connect to and query your PostgreSQL database. With the server running, the MCP can be loaded into client applications for interaction.

Client Configuration

To use this MCP in a client application, add the following configuration to your client's MCP configuration file (e.g., .cursor/mcp.json):

{
  "mcpServers": {
    "postgres-mcp-server": {
      "command": "/path/to/your/venv/bin/mcp",
      "args": ["run", "/path/to/your/postgres-mcp/src/main.py"],
      "env": {
        "APP_NAME": "mcp-demo",
        "DB_HOST": "localhost",
        "DB_PORT": "5432",
        "DB_USER": "postgres",
        "DB_PASSWORD": "postgres",
        "DB_NAME": "postgres"
      }
    }
  }
}

Be sure to replace the paths with the actual paths to your virtual environment and project directory, and update the environment variables to match your PostgreSQL configuration.

Development

Install development dependencies with UV:

uv pip install -e ".[dev]"

Development tools included:

  • JupyterLab for notebooks
  • Pyright for type checking
  • Ruff for linting

Docker

To run the application with Docker:

  1. Build the Docker image:

    docker build -t mcp-demo .
    
  2. Run the container:

    docker run --env-file .env.docker -p 8000:8000 mcp-demo
    

Example Usage

Get Schema Information

from mcp.client import get_client

client = get_client("http://localhost:8000")
schema_info = client.get_resource("database://public")
print(schema_info)

Get Table Details

table_info = client.get_resource("database://public/tables/users")
print(table_info)

Execute a Query

result = client.invoke_tool("query_database", {"query": "SELECT * FROM users LIMIT 10"})
print(result)

License

[Add your license information here]

Contributors

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.

  • Mintplex-Labs
  • The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.

  • modelcontextprotocol
  • Model Context Protocol Servers

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • n8n-io
  • Fair-code workflow automation platform with native AI capabilities. Combine visual building with custom code, self-host or cloud, 400+ integrations.

  • WangRongsheng
  • 🧑‍🚀 全世界最好的LLM资料总结(Agent框架、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.

  • open-webui
  • User-friendly AI Interface (Supports Ollama, OpenAI API, ...)

  • metorial
  • Containerized versions of hundreds of MCP servers 📡 🧠

    Reviews

    5 (1)
    Avatar
    user_FkBUZw7v
    2025-04-16

    As a loyal mcp application user, I highly recommend postgres-mcp! This tool by Tibiritabara is a game-changer for database management and automation. It's user-friendly, robust, and integrates seamlessly into my workflow. Check it out on GitHub: https://github.com/Tibiritabara/postgres-mcp.