MCP cover image

Regularization paths for SCAD- and MCP-penalized regression models

6

Github Watches

28

Github Forks

42

Github Stars

GitHub version CRAN version downloads R-CMD-check codecov.io

Regularization paths for MCP and SCAD penalized regression models

ncvreg is an R package for fitting regularization paths for linear regression, GLM, and Cox regression models using lasso or nonconvex penalties, in particular the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalty, with options for additional L2 penalties (the "elastic net" idea). Utilities for carrying out cross-validation as well as post-fitting visualization, summarization, inference, and prediction are also provided.

Installation

To install the latest release version from CRAN:

install.packages("ncvreg")

To install the latest development version from GitHub:

remotes::install_github("pbreheny/ncvreg")

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.

  • Mintplex-Labs
  • The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.

  • n8n-io
  • Fair-code workflow automation platform with native AI capabilities. Combine visual building with custom code, self-host or cloud, 400+ integrations.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • WangRongsheng
  • 🧑‍🚀 全世界最好的LLM资料总结(Agent框架、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.

  • metorial
  • Containerized versions of hundreds of MCP servers 📡 🧠

  • langgenius
  • Dify is an open-source LLM app development platform. Dify's intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.

  • ravitemer
  • A powerful Neovim plugin for managing MCP (Model Context Protocol) servers

  • Azure
  • The Azure MCP Server, bringing the power of Azure to your agents.

    Reviews

    5 (1)
    Avatar
    user_NQzHIWgo
    2025-04-17

    As a dedicated user of MCP application, I highly recommend ncvreg by pbreheny. This comprehensive tool offers efficient regularization paths for linear and logistic regression models, tailored especially for high-dimensional data. Its integration and functionality within the R environment are seamless, making it an invaluable resource for statistical analysis and research. Highly efficient and user-friendly!