Cover image
Try Now
2025-03-22

Message Communication Protocol (MCP) server that facilitates secure, standardized communication between system components and the medicine inventory database. Provides RESTful endpoints for location-based medicine searches, availability queries, and optimized messaging for WhatsApp integration.

3 years

Works with Finder

1

Github Watches

1

Github Forks

0

Github Stars

MedifinderMCP Server

An MCP (Model Context Protocol) server for medicine inventory queries, designed to work with AI assistants like Claude.

Overview

The MedifinderMCP Server provides tools and resources for querying a medicine inventory database through the Model Context Protocol (MCP). It allows AI assistants and other clients to:

  • Search for medicines by name or location
  • Check medicine availability at different healthcare facilities
  • Get stock information for specific medicines
  • View statistics on medicine availability by region
  • Analyze stock status across the healthcare system

Database Schema

The application uses a normalized database schema:

Region
  - region_id (PK)
  - name
  - code
  - created_at
  - updated_at

MedicalCenter
  - center_id (PK)
  - code
  - name
  - region_id (FK -> Region)
  - category
  - reporter_name
  - institution_type
  - reporter_type
  - address
  - latitude
  - longitude
  - created_at
  - updated_at

ProductType
  - type_id (PK)
  - code
  - name
  - description
  - created_at
  - updated_at

Product
  - product_id (PK)
  - code
  - name
  - type_id (FK -> ProductType)
  - description
  - dosage_form
  - strength
  - created_at
  - updated_at

Inventory
  - inventory_id (PK)
  - center_id (FK -> MedicalCenter)
  - product_id (FK -> Product)
  - current_stock
  - avg_monthly_consumption
  - accumulated_consumption_4m
  - measurement
  - last_month_consumption
  - last_month_stock
  - status_indicator
  - cpma_12_months_ago
  - cpma_24_months_ago
  - cpma_36_months_ago
  - accumulated_consumption_12m
  - report_date
  - status
  - created_at
  - updated_at

User
  - user_id (PK)
  - phone_number
  - name
  - preferred_location
  - created_at
  - updated_at

SearchHistory
  - search_id (PK)
  - user_id (FK -> User)
  - product_query
  - location_query
  - search_radius
  - results_count
  - created_at

Project Structure

medifinder-mcp/
├── app/
│   ├── __init__.py
│   ├── config.py            # Configuration management
│   ├── db/
│   │   ├── __init__.py
│   │   ├── connection.py    # Database connection handling
│   │   └── queries.py       # SQL queries
│   ├── models/
│   │   ├── __init__.py
│   │   ├── base.py          # Base model with timestamp fields
│   │   ├── region.py        # Region model
│   │   ├── medical_center.py # Medical center model
│   │   ├── product_type.py  # Product type model
│   │   ├── product.py       # Product model
│   │   ├── inventory.py     # Inventory model
│   │   ├── user.py          # User model
│   │   └── search_history.py # Search history model
│   ├── mcp/
│   │   ├── __init__.py
│   │   ├── server.py        # MCP server setup
│   │   ├── tools.py         # Tool implementations
│   │   ├── resources.py     # Resource implementations
│   │   └── prompts.py       # Prompt templates
│   └── utils/
│       ├── __init__.py
│       └── helpers.py       # Helper functions
├── main.py                  # Application entry point
├── requirements.txt         # Dependencies
└── README.md                # Documentation

MCP Features

Tools

  • search_medicines: Search for medicines by name or location
  • get_medicine_locations: Find locations where a medicine is available
  • get_medicine_stock: Get stock information for a specific medicine
  • get_regional_statistics: Get medicine statistics by region
  • get_medicine_status: Get overall medicine statistics
  • diagnose_database: Check database connectivity and content
  • troubleshoot_connection: Detailed database connection diagnostics
  • create_database_schema: Create database tables based on models

Resources

  • product://{id}: Get product details by ID
  • stock://{name}: Get stock information for a product by name
  • locations://{region}: Get medical centers in a specific region
  • statistics://stock: Get overall stock statistics
  • statistics://regions: Get regional statistics

Prompts

  • medicine_search_prompt: Template for searching medicines by name
  • medicine_availability_prompt: Template for checking medicine availability
  • medicine_statistics_prompt: Template for analyzing medicine statistics
  • regional_availability_prompt: Template for analyzing regional medicine availability

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/medifinder-mcp.git
    cd medifinder-mcp
    
  2. Create a virtual environment and install dependencies:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    pip install -r requirements.txt
    
  3. Set up environment variables by creating a .env file:

    DB_HOST=localhost
    DB_PORT=5432
    DB_NAME=medifinderbot
    DB_USER=your_user
    DB_PASSWORD=your_password
    DEBUG=True
    ENV=development
    SERVER_NAME=MedifinderMCP
    SERVER_VERSION=1.0.0
    MCP_SERVER_NAME=MedifinderMCP
    MCP_SERVER_DESCRIPTION=MCP server for medicine inventory queries
    MAX_SEARCH_RESULTS=50
    SEARCH_SIMILARITY_THRESHOLD=0.3
    
  4. Create the database:

    # Connect to PostgreSQL
    psql -U postgres
    
    # Create database and user
    CREATE DATABASE medifinderbot;
    CREATE USER your_user WITH PASSWORD 'your_password';
    GRANT ALL PRIVILEGES ON DATABASE medifinderbot TO your_user;
    
    # Exit PostgreSQL
    \q
    
  5. Initialize the database schema: After starting the server, use the create_database_schema tool to create the tables.

Usage

Running the Server Locally

You can run the MCP server directly:

python main.py

Using MCP Inspector

For development and testing, the MCP Inspector provides a convenient way to interact with the server:

  1. Install MCP CLI:

    pip install mcp[cli]
    
  2. Run the server in development mode:

    python -m mcp dev main.py
    
  3. The MCP Inspector will open in your browser, allowing you to:

    • Test tools and resources
    • View the output of diagnostic tools
    • Experiment with different queries

Integration with Claude Desktop

To use the server with Claude Desktop:

  1. Create a batch file for reliable startup (run-mcp-server.bat):

    @echo off
    cd /d %~dp0
    call venv\Scripts\activate.bat
    python main.py
    
  2. Install the server in Claude Desktop:

    mcp install run-mcp-server.bat -f .env
    
  3. Alternatively, edit Claude Desktop's config file manually:

    {
      "mcpServers": {
        "MedifinderMCP": {
          "command": "C:\\path\\to\\project\\venv\\Scripts\\python.exe",
          "args": ["C:\\path\\to\\project\\main.py"],
          "env": {
            "DB_HOST": "localhost",
            "DB_PORT": "5432",
            "DB_NAME": "medifinderbot",
            "DB_USER": "your_user",
            "DB_PASSWORD": "your_password",
            "DEBUG": "True",
            "ENV": "development",
            "SERVER_NAME": "MedifinderMCP",
            "SERVER_VERSION": "1.0.0",
            "MCP_SERVER_NAME": "MedifinderMCP",
            "MCP_SERVER_DESCRIPTION": "MCP server for medicine inventory queries",
            "MAX_SEARCH_RESULTS": "50",
            "SEARCH_SIMILARITY_THRESHOLD": "0.3"
          }
        }
      }
    }
    
  4. In Claude Desktop, select the MedifinderMCP server from the servers dropdown to enable it for your conversation.

Troubleshooting

Common Issues

  1. Database Connection Issues:

    • Use the troubleshoot_connection tool to diagnose connection problems
    • Verify your database credentials in the .env file
    • Ensure PostgreSQL is running on the specified port
  2. Missing Tables:

    • Use the create_database_schema tool to create the database tables
    • Check logs for any errors during schema creation
  3. Empty Results:

    • If queries return no results, there might not be any data in your tables
    • You need to import data into the tables using your data ingestion process
  4. Session Binding Errors:

    • If you see "Instance is not bound to a Session" errors, ensure model instances are converted to dictionaries within active sessions
    • See how this is handled in the queries.py file for examples
  5. Missing Dependencies:

    • Run pip install -r requirements.txt to ensure all dependencies are installed
    • Common missing dependencies are: mcp, python-dotenv, psycopg2-binary

Diagnostic Tools

When troubleshooting, use these built-in diagnostic tools:

  1. diagnose_database: Checks if:

    • The database connection works
    • Tables exist
    • Tables contain data
  2. troubleshoot_connection: Provides detailed information about:

    • Database connection settings
    • Connection errors
    • Table structure
    • Recommended fixes
  3. create_database_schema: Creates the database tables and provides:

    • List of created tables
    • Any errors that occurred
    • Test record creation results

License

MIT License

Contributors

  • Lenin Carrasco - Initial work

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Beniyam Berhanu
  • Therapist adept at identifying core issues and offering practical advice with images.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Lists Tailwind CSS classes in monospaced font

  • apappascs
  • Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • huahuayu
  • A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.

  • deemkeen
  • control your mbot2 with a power combo: mqtt+mcp+llm

  • jae-jae
  • MCP server for fetch web page content using Playwright headless browser.

    Reviews

    2 (1)
    Avatar
    user_CvbgpAvd
    2025-04-16

    As a loyal user of the medifinder-mcp application, I can confidently say this is a game-changer for medical product searches. The intuitive interface and precise search capabilities save me so much time and effort. The robust design by MediFinderBot ensures reliability. Highly recommended for anyone in the healthcare industry! Check it out at https://github.com/MediFinderBot/medifinder-mcp.