I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

wecom-bot-mcp-server
A Python server implementation for WeCom (WeChat Work) bot that follows the Model Context Protocol (MCP). This server provides a standardized interface for handling automated messaging and context-aware interactions within enterprise WeChat environments.
3 years
Works with Finder
1
Github Watches
5
Github Forks
24
Github Stars
WeCom Bot MCP Server

A Model Context Protocol (MCP) compliant server implementation for WeCom (WeChat Work) bot.
Features
- Support for multiple message types:
- Text messages
- Markdown messages
- Image messages (base64)
- File messages
- @mention support (via user ID or phone number)
- Message history tracking
- Configurable logging system
- Full type annotations
- Pydantic-based data validation
Requirements
- Python 3.10+
- WeCom Bot Webhook URL (obtained from WeCom group settings)
Installation
There are several ways to install WeCom Bot MCP Server:
1. Automated Installation (Recommended)
Using Smithery (For Claude Desktop):
npx -y @smithery/cli install wecom-bot-mcp-server --client claude
Using VSCode with Cline Extension:
- Install Cline Extension from VSCode marketplace
- Open Command Palette (Ctrl+Shift+P / Cmd+Shift+P)
- Search for "Cline: Install Package"
- Type "wecom-bot-mcp-server" and press Enter
2. Manual Installation
Install from PyPI:
pip install wecom-bot-mcp-server
Configure MCP manually:
Create or update your MCP configuration file:
// For Windsurf: ~/.windsurf/config.json
{
"mcpServers": {
"wecom": {
"command": "uvx",
"args": [
"wecom-bot-mcp-server"
],
"env": {
"WECOM_WEBHOOK_URL": "your-webhook-url"
}
}
}
}
Configuration
Setting Environment Variables
# Windows PowerShell
$env:WECOM_WEBHOOK_URL = "your-webhook-url"
# Optional configurations
$env:MCP_LOG_LEVEL = "DEBUG" # Log levels: DEBUG, INFO, WARNING, ERROR, CRITICAL
$env:MCP_LOG_FILE = "path/to/custom/log/file.log" # Custom log file path
Log Management
The logging system uses platformdirs.user_log_dir()
for cross-platform log file management:
- Windows:
C:\Users\<username>\AppData\Local\hal\wecom-bot-mcp-server
- Linux:
~/.local/share/hal/wecom-bot-mcp-server
- macOS:
~/Library/Application Support/hal/wecom-bot-mcp-server
The log file is named mcp_wecom.log
and is stored in the above directory.
Usage
Starting the Server
wecom-bot-mcp-server
Usage Examples (With MCP)
# Scenario 1: Send weather information to WeCom
USER: "How's the weather in Shenzhen today? Send it to WeCom"
ASSISTANT: "I'll check Shenzhen's weather and send it to WeCom"
await mcp.send_message(
content="Shenzhen Weather:\n- Temperature: 25°C\n- Weather: Sunny\n- Air Quality: Good",
msg_type="markdown"
)
# Scenario 2: Send meeting reminder and @mention relevant people
USER: "Send a reminder for the 3 PM project review meeting, remind Zhang San and Li Si to attend"
ASSISTANT: "I'll send the meeting reminder"
await mcp.send_message(
content="## Project Review Meeting Reminder\n\nTime: Today 3:00 PM\nLocation: Meeting Room A\n\nPlease be on time!",
msg_type="markdown",
mentioned_list=["zhangsan", "lisi"]
)
# Scenario 3: Send a file
USER: "Send this weekly report to the WeCom group"
ASSISTANT: "I'll send the weekly report"
await mcp.send_message(
content=Path("weekly_report.docx"),
msg_type="file"
)
Direct API Usage
Send Messages
from wecom_bot_mcp_server import mcp
# Send markdown message
await mcp.send_message(
content="**Hello World!**",
msg_type="markdown"
)
# Send text message and mention users
await mcp.send_message(
content="Hello @user1 @user2",
msg_type="text",
mentioned_list=["user1", "user2"]
)
Send Files
from wecom_bot_mcp_server import send_wecom_file
# Send file
await send_wecom_file("/path/to/file.txt")
Send Images
from wecom_bot_mcp_server import send_wecom_image
# Send local image
await send_wecom_image("/path/to/image.png")
# Send URL image
await send_wecom_image("https://example.com/image.png")
Development
Setup Development Environment
- Clone the repository:
git clone https://github.com/loonghao/wecom-bot-mcp-server.git
cd wecom-bot-mcp-server
- Create a virtual environment and install dependencies:
# Using uv (recommended)
pip install uv
uv venv
uv pip install -e ".[dev]"
# Or using traditional method
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -e ".[dev]"
Testing
# Using uv (recommended)
uvx nox -s pytest
# Or using traditional method
nox -s pytest
Code Style
# Check code
uvx nox -s lint
# Automatically fix code style issues
uvx nox -s lint_fix
Building and Publishing
# Build the package
uv build
# Build and publish to PyPI
uv build && twine upload dist/*
Project Structure
wecom-bot-mcp-server/
├── src/
│ └── wecom_bot_mcp_server/
│ ├── __init__.py
│ ├── server.py
│ ├── message.py
│ ├── file.py
│ ├── image.py
│ ├── utils.py
│ └── errors.py
├── tests/
│ ├── test_server.py
│ ├── test_message.py
│ ├── test_file.py
│ └── test_image.py
├── docs/
├── pyproject.toml
├── noxfile.py
└── README.md
License
This project is licensed under the MIT License - see the LICENSE file for details.
Contact
- Author: longhao
- Email: hal.long@outlook.com
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Converts Figma frames into front-end code for various mobile frameworks.
PR Professional: Guiding You to Get Media Placements and Publicity Quickly and Effectively
Advanced software engineer GPT that excels through nailing the basics.
Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.
Mirror ofhttps://github.com/agentience/practices_mcp_server
Mirror ofhttps://github.com/bitrefill/bitrefill-mcp-server
Reviews

user_MiYDlrql
I've been using the wecom-bot-mcp-server by loonghao and it's been fantastic! The setup was seamless, and the integration with our existing systems was smooth. The documentation on GitHub is clear and comprehensive, making it easy to get started. It's incredibly versatile and has significantly improved our workflow. Highly recommend checking it out!