Cover image
Try Now
2024-12-13

3 years

Works with Finder

1

Github Watches

15

Github Forks

52

Github Stars

Data Visualization MCP Server

Overview

A Model Context Protocol (MCP) server implementation that provides the LLM an interface for visualizing data using Vega-Lite syntax.

Components

Tools

The server offers two core tools:

  • save_data
    • Save a table of data agregations to the server for later visualization
    • Input:
      • name (string): Name of the data table to be saved
      • data (array): Array of objects representing the data table
    • Returns: success message
  • visualize_data
    • Visualize a table of data using Vega-Lite syntax
    • Input:
      • data_name (string): Name of the data table to be visualized
      • vegalite_specification (string): JSON string representing the Vega-Lite specification
    • Returns: If the --output_type is set to text, returns a success message with an additional artifact key containing the complete Vega-Lite specification with data. If the --output_type is set to png, returns a base64 encoded PNG image of the visualization using the MPC ImageContent container.

Usage with Claude Desktop

# Add the server to your claude_desktop_config.json
{
  "mcpServers": {
    "datavis": {
        "command": "uv",
        "args": [
            "--directory",
            "/absolute/path/to/mcp-datavis-server",
            "run",
            "mcp_server_datavis",
            "--output_type",
            "png" # or "text"
        ]
    }
  }
}

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Lists Tailwind CSS classes in monospaced font

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • tomoyoshi hirata
  • Sony α7IIIマニュアルアシスタント

  • apappascs
  • Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • jae-jae
  • MCP server for fetch web page content using Playwright headless browser.

  • ravitemer
  • A powerful Neovim plugin for managing MCP (Model Context Protocol) servers

  • patruff
  • Bridge between Ollama and MCP servers, enabling local LLMs to use Model Context Protocol tools

  • pontusab
  • The Cursor & Windsurf community, find rules and MCPs

  • av
  • Effortlessly run LLM backends, APIs, frontends, and services with one command.

  • WangRongsheng
  • 🧑‍🚀 全世界最好的LLM资料总结(Agent框架、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.

  • Mintplex-Labs
  • The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.

  • appcypher
  • Awesome MCP Servers - A curated list of Model Context Protocol servers

    Reviews

    1 (1)
    Avatar
    user_bojCB0R9
    2025-04-17

    The mcp-vegalite-server by isaacwasserman is an impressive tool for data visualization using Vega-Lite. I found the GitHub repository (https://github.com/isaacwasserman/mcp-vegalite-server) very well-documented, making it easier to integrate and utilize. It's a robust server application designed to serve Vega-Lite charts efficiently. Highly recommended for anyone looking to enhance their data visualization projects! Amazing work by the author!