
🗄️ LanceDB MCP Server for LLMS
A Model Context Protocol (MCP) server that enables LLMs to interact directly the documents that they have on-disk through agentic RAG and hybrid search in LanceDB. Ask LLMs questions about the dataset as a whole or about specific documents.
✨ Features
- 🔍 LanceDB-powered serverless vector index and document summary catalog.
- 📊 Efficient use of LLM tokens. The LLM itself looks up what it needs when it needs.
- 📈 Security. The index is stored locally so no data is transferred to the Cloud when using a local LLM.
🚀 Quick Start
To get started, create a local directory to store the index and add this configuration to your Claude Desktop config file:
MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"lancedb": {
"command": "npx",
"args": [
"lance-mcp",
"PATH_TO_LOCAL_INDEX_DIR"
]
}
}
}
Prerequisites
- Node.js 18+
- npx
- MCP Client (Claude Desktop App for example)
- Summarization and embedding models installed (see config.ts - by default we use Ollama models)
-
ollama pull snowflake-arctic-embed2
-
ollama pull llama3.1:8b
-
Demo
<img" alt="lance-mcp image">
Local Development Mode:
{
"mcpServers": {
"lancedb": {
"command": "node",
"args": [
"PATH_TO_LANCE_MCP/dist/index.js",
"PATH_TO_LOCAL_INDEX_DIR"
]
}
}
}
Use npm run build
to build the project.
Use npx @modelcontextprotocol/inspector dist/index.js PATH_TO_LOCAL_INDEX_DIR
to run the MCP tool inspector.
Seed Data
The seed script creates two tables in LanceDB - one for the catalog of document summaries, and another one - for vectorized documents' chunks. To run the seed script use the following command:
npm run seed -- --dbpath <PATH_TO_LOCAL_INDEX_DIR> --filesdir <PATH_TO_DOCS>
You can use sample data from the docs/ directory. Feel free to adjust the default summarization and embedding models in the config.ts file. If you need to recreate the index, simply rerun the seed script with the --overwrite
option.
Catalog
- Document summary
- Metadata
Chunks
- Vectorized document chunk
- Metadata
🎯 Example Prompts
Try these prompts with Claude to explore the functionality:
"What documents do we have in the catalog?"
"Why is the US healthcare system so broken?"
📝 Available Tools
The server provides these tools for interaction with the index:
Catalog Tools
-
catalog_search
: Search for relevant documents in the catalog
Chunks Tools
-
chunks_search
: Find relevant chunks based on a specific document from the catalog -
all_chunks_search
: Find relevant chunks from all known documents
📜 License
This project is licensed under the MIT License - see the LICENSE file for details.
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.
Bridge between Ollama and MCP servers, enabling local LLMs to use Model Context Protocol tools
🧑🚀 全世界最好的LLM资料总结(Agent框架、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.
Fair-code workflow automation platform with native AI capabilities. Combine visual building with custom code, self-host or cloud, 400+ integrations.
Reviews

user_JPEUvMG1
Lance-mcp by adiom-data is a fantastic tool for managing and processing data streams with ease. The flexibility and high performance of this application make it a must-have for any serious developer or data scientist. With its seamless integration and user-friendly interface, I highly recommend checking it out. For more details, visit https://github.com/adiom-data/lance-mcp.