
MCP
Agrupación y priorización de múltiples límites
1
Github Watches
3
Github Forks
8
Github Stars
Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining
This repository stores our experimental codes and part of the simulated datasets for paper `Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining'. MCP is short for our proposed sampling method Multiple-Boundary Clustering and Prioritization.
Dataset:
Part of the datasets lies in the folder 'dataset'. Because some of our simulated test datasets exceed GitHub's file size limit of 100.00 MB, we can only upload part of our datasets in file '/mnist'.
The operational details of simulated test datasets are listed in the README under the folder 'dataset'.
Main experimental codes
You can easily implement our method and 5 baseline methods by yourself or modifying this code.
The main experimental codes are samedist_mnist_retrain.py, samedist_cifar_retrain.py, samedist_svhn_retrain.py. You can modify the list variables 'baselines'(methods) and 'operators'(simulated dataset) to run what you prefer.
baselines =['MCP','LSA','DSA','CES','AAL','SRS']
operators =['fgsm','jsma','bim-a','bim-b','cw-l2','scale','rotation','translation','shear','brightness','contrast']
Baseline methods
MCP. Our method "MCP" is implemented in the "samedist_***_retrain.py" as the function "select_my_optimize".
LSA/DSA. You can directly invoke the functions "fetch_lsa" and "fetch_dsa" from "/LSA_DSA/sa.py" which is downloaded online from the paper "Guiding Deep Learning System Testing Using Surprise Adequacy". These functions can help you get the SA value of each input. The higher the value of SA is, the corresponding test case is more surprise to the DNN under testing. So we select the subset of test cases with higher corresponding SAs.
CES. You can directly invoke the functions "conditional_sample" from "CES/condition.py" which is downloaded online from the git. The original codes have no external interface. In order to call these codes conveniently, we rewrite an interface function, but the internal code and logic about sampling completely reuse their code.
AAL. This approach is written by Matlab. We have write a individual README in the file "AAL" along with all the codes and our experimental setups and results. For short, you can run MATLAB programs and get the intermediate results stored in mnist_finalResults, cifar_finalResults, svhn_finalResults. Then you can run it in our python codes just as the other baseline methods.
SRS. This method is implemented in the "samedist_***_retrain.py" as the function "select_rondom".
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)
Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.
Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
Reviews

user_f425oVz8
As a dedicated user of MCP, I must say it's an incredibly useful tool developed by actionabletest. Its seamless integration and user-friendly interface make it a joy to use. From navigating the start URL to accessing comprehensive documentation on GitHub, MCP offers a robust experience that caters to both beginners and advanced users. It's a must-have for anyone seeking efficiency and effectiveness in their applications. Highly recommended!