I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

MCP Server for Transcripter
A Model Context Protocol (MCP) server implementation for the Transcripter project. This package provides tools and resources for AI-powered features using the MCP standard.
Features
Tools
- test-api: Test API endpoints and return the results
- transcription-search: Search transcriptions with filtering and pagination
- transcription-summary: Generate a summary of a transcription using AI
Resources
- transcription://{id}: Access transcription data by ID
- analysis://{id}: Access analysis data by ID
Requirements
- Node.js >= 18.0.0
- npm >= 7.0.0
Installation
npm install
Building
# Build for both ESM and CommonJS
npm run build
# Build for ESM only
npm run build:esm
# Build for CommonJS only
npm run build:cjs
Running
# Start the MCP server on the default port (3500)
npm run server
# Start the MCP server on a custom port
npm run server 4000
Testing
npm test
Usage Examples
Using the test-api tool
import { Client } from "@modelcontextprotocol/sdk/client";
import { SSEClientTransport } from "@modelcontextprotocol/sdk/client/sse";
async function testApiEndpoint() {
// Connect to the MCP server
const transport = new SSEClientTransport("http://localhost:3500/sse", "http://localhost:3500/message");
const client = new Client();
await client.connect(transport);
// Use the test-api tool
const result = await client.tools.execute("test-api", {
endpoint: "transcriptions",
method: "GET",
});
console.log(result);
}
Using the transcription resource
import { Client } from "@modelcontextprotocol/sdk/client";
import { SSEClientTransport } from "@modelcontextprotocol/sdk/client/sse";
async function getTranscription(id: number) {
// Connect to the MCP server
const transport = new SSEClientTransport("http://localhost:3500/sse", "http://localhost:3500/message");
const client = new Client();
await client.connect(transport);
// Access the transcription resource
const transcription = await client.resources.get(`transcription://${id}`);
console.log(transcription);
}
Integration with Transcripter
This MCP server integrates with the Transcripter project to provide AI-powered features for transcriptions and analyses. It serves as a standardized interface for AI model interactions.
Project Structure
-
src/cli.ts
: Command-line interface for starting the MCP server -
src/tools/
: Implementation of MCP tools -
src/resources/
: Implementation of MCP resource providers -
src/tests/
: Tests for tools and resources
License
MIT
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Ein einheitliches API-Gateway zur Integration mehrerer Ethercan-ähnlicher Blockchain-Explorer-APIs mit Modellkontextprotokoll (MCP) für AI-Assistenten.
Reviews

user_z3RD7Qp4
I've been using the zntl-mcp-server by Zentala, and it's been a game-changer for my projects. It's highly reliable and straightforward to integrate. The performance and stability are top-notch, making it a must-have for anyone in need of a robust server solution. Check it out on their GitHub page to explore its full potential!