MCP cover image
See in Github
2025-03-23

Tiny Todo MCP ist ein spezialisierter Server, der das Modellkontextprotokoll (MCP) implementiert, das es KI -Assistenten ermöglicht, mit persistentem Speicher für Aufgaben zu interagieren. Auf diese Weise können KI -Modelle den Kontext im Laufe der Zeit aufrechterhalten und Aufgaben erstellen und verwalten, die über ihre üblichen Kontextbeschränkungen hinausgehen.

1

Github Watches

1

Github Forks

1

Github Stars

Tiny TODO MCP

A Model Context Protocol (MCP) server implementation providing persistent task management capabilities for AI assistants.

Overview

Tiny TODO MCP is a specialized server that implements the Model Context Protocol (MCP), allowing AI assistants to interact with persistent storage for tasks. This enables AI models to maintain context over time and create and manage tasks beyond their usual context limitations.

Features

TODO System

  • Create TODOs: Store tasks with titles, descriptions, and due dates
  • Update TODOs: Mark tasks as complete or incomplete
  • Delete TODOs: Remove tasks from the system
  • Search TODOs: Find tasks by various criteria including completion status and due dates
  • Task Management: View upcoming and overdue tasks

Integration

  • Follows the Model Context Protocol standard
  • Designed for easy integration with AI assistants
  • Provides consistent error handling and responses

Use Cases

  • Extend AI capabilities with persistent task tracking
  • Enable AI assistants to track tasks with due dates and completion status
  • Support for time-aware task reminders (upcoming and overdue tasks)

Architecture

Tiny Memory MCP uses a SQLite database for persistent storage, with a clean layered architecture separating:

  • Tool interface (MCP protocol implementation)
  • Service layer (business logic)
  • Repository layer (data access)
  • Database layer (storage)

Each tool exposed through the MCP interface provides clear documentation of its capabilities, parameters, and return values.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • modelcontextprotocol
  • Modellkontext -Protokollserver

  • Mintplex-Labs
  • Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.

  • huahuayu
  • Ein einheitliches API-Gateway zur Integration mehrerer Ethercan-ähnlicher Blockchain-Explorer-APIs mit Modellkontextprotokoll (MCP) für AI-Assistenten.

    Reviews

    3 (1)
    Avatar
    user_iVYN55b8
    2025-04-15

    DevOps MCP Servers by a37ai has exceeded my expectations! The seamless integration and high reliability have significantly improved our deployment process. The intuitive interface and detailed documentation make it incredibly user-friendly. Highly recommended for any DevOps team looking for robust server solutions. Check it out here: https://mcp.so/server/devops-mcp-servers/a37ai