
Spring-AI-MCP
Java SDK für das Modellkontextprotokoll (MCP), das eine nahtlose Integration zwischen Java- und Spring-Anwendungen und MCP-konformen KI-Modellen und -Tools bietet.
7
Github Watches
24
Github Forks
151
Github Stars
NOTE: This project has been graduated and moved to the MCP Java SDK and Spring AI MCP. See you there! This repository is now archived.
Java & Spring MCP
Set of projects that provide Java SDK and Spring Framework integration for the Model Context Protocol. It enables Java applications to interact with AI models and tools through a standardized interface, supporting both synchronous and asynchronous communication patterns.
📚 Reference Documentation
For comprehensive guides and API documentation, visit the Spring AI MCP Reference Documentation.


Projects
MCP Java SDK
Java implementation of the Model Context Protocol specification. It includes:
- Synchronous and asynchronous MCP Client and MCP Server implementations
- Standard MCP operations support (tool discovery, resource management, prompt handling, structured logging). Support for request and notification handling.
- Stdio and SSE transport implementations.
MCP Transports
Core Transports
- Stdio-based (
StdioClientTransport
,StdioServerTransport
) for process-based communication - Java HttpClient-based SSE client (
HttpClientSseClientTransport
) for HTTP streaming - Servlet-based SSE server (
HttpServletSseServerTransport
) for HTTP SSE Server streaming using traditional Servlet API
Optional SSE Transports
- WebFlux SSE Transport - Reactive HTTP streaming with Spring WebFlux (Client & Server)
-
WebMvc SSE Transport - Spring MVC based HTTP SSE transport (Server only).
You can use the core
HttpClientSseClientTransport
transport as a SSE client.
Spring AI MCP
The Spring integration module provides Spring-specific functionality:
- Integration with Spring AI's function calling system
- Spring-friendly abstractions for MCP clients
- Auto-configurations (WIP)
Installation
Add the following dependencies to your Maven project:
<!-- Core MCP -->
<dependency>
<groupId>org.springframework.experimental</groupId>
<artifactId>mcp</artifactId>
</dependency>
<!-- Optional: WebFlux SSE transport -->
<dependency>
<groupId>org.springframework.experimental</groupId>
<artifactId>mcp-webflux-sse-transport</artifactId>
</dependency>
<!-- Optional: WebMVC SSE transport -->
<dependency>
<groupId>org.springframework.experimental</groupId>
<artifactId>mcp-webmvc-sse-transport</artifactId>
</dependency>
<!-- Optional: Spring AI integration -->
<dependency>
<groupId>org.springframework.experimental</groupId>
<artifactId>spring-ai-mcp</artifactId>
</dependency>
This is a milestone release, not available on Maven Central. Add this repository to your POM:
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
Reffer to the Dependency Management page for more information.
Example Demos
Explore these MCP examples in the spring-ai-examples/model-context-protocol repository:
- SQLite Simple - Demonstrates LLM integration with a database
- SQLite Chatbot - Interactive chatbot with SQLite database interaction
- Filesystem - Enables LLM interaction with local filesystem folders and files
- Brave - Enables natural language interactions with Brave Search, allowing you to perform internet searches.
- Theme Park API Example - Shows how to create an MCP server and client with Spring AI, exposing Theme Park API tools
- Http SSE Client + WebMvc SSE Server - Showcases how to create and use MCP WebMvc servers and HttpClient clients with different capabilities.
- WebFlux SSE Client + WebFlux SSE Server - Showcases how to create and use MCP WebFlux servers and clients with different capabilities
- HttpClient SSE Client + Servlet SSE Server - Showcases how to create and use MCP Servlet SSE Server and HttpClient SSE Client with different capabilities
Documentation
Development
- Building from Source
mvn clean install
- Running Tests
mvn test
Contributing
This is an experimental Spring project. Contributions are welcome! Please:
- Fork the repository
- Create a feature branch
- Submit a Pull Request
Team
- Christian Tzolov
- Dariusz Jędrzejczyk
Links
License
This project is licensed under the Apache License 2.0.
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
Fair-Code-Workflow-Automatisierungsplattform mit nativen KI-Funktionen. Kombinieren Sie visuelles Gebäude mit benutzerdefiniertem Code, SelbstHost oder Cloud, 400+ Integrationen.
Awesome MCP -Server - eine kuratierte Liste von Modellkontext -Protokollservern für Modellkontext
🔥 1Panel bietet eine intuitive Weboberfläche und einen MCP -Server, um Websites, Dateien, Container, Datenbanken und LLMs auf einem Linux -Server zu verwalten.
Reviews

user_EihCSbEM
As a dedicated user of Spring-AI-MCP, I am thoroughly impressed by its capabilities. The seamless integration and intuitive features truly enhance my AI projects. The author's focus on delivering a reliable and efficient framework is evident. Highly recommend for anyone looking to streamline their machine learning workflows. Fantastic work by Spring-Projects-Experimental!