Confidential guide on numerology and astrology, based of GG33 Public information

JUPYTER_MCP_SERVER
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
Jupyter_MCP_Server
JupyterMCP - Jupyter Notebook Model Context Protocol Integration
JupyterMCP connects Jupyter Notebook to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Jupyter Notebooks. This integration enables AI-assisted code execution, data analysis, visualization, and more.
Features
- Two-way communication: Connect Claude AI to Jupyter Notebook through a WebSocket-based server
- Cell manipulation: Insert, execute, and manage notebook cells
- Notebook management: Save notebooks and retrieve notebook information
- Cell execution: Run specific cells or execute all cells in a notebook
- Output retrieval: Get output content from executed cells with text limitation options
Components
The system consists of three main components:
-
WebSocket Server (
jupyter_ws_server.py
): Sets up a WebSocket server inside Jupyter that bridges communication between notebook and external clients -
Client JavaScript (
client.js
): Runs in the notebook to handle operations (inserting cells, executing code, etc.) -
MCP Server (
jupyter_mcp_server.py
): Implements the Model Context Protocol and connects to the WebSocket server
Installation
Prerequisites
- Python 3.12 or newer (probably also work with older versions, but not tested)
-
uv
package manager - Claude AI desktop application
Installing uv
If you're on Mac:
brew install uv
On Windows (PowerShell):
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
For other platforms, see the uv installation guide.
Setup
-
Clone or download this repository to your computer:
git clone https://github.com/jjsantos01/jupyter-notebook-mcp.git
-
Create virtual environment with required packages an install
jupyter-mcp
kernel, so it can be recognized by your jupyter installation, if you had one before.uv run python -m ipykernel install --name jupyter-mcp
-
(optional) Install additional Python packages for your analysis:
uv pip install seaborn
-
Configure Claude desktop integration: Go to
Claude
>Settings
>Developer
>Edit Config
>claude_desktop_config.json
to include the following:{ "mcpServers": { "jupyter": { "command": "uv", "args": [ "--directory", "/ABSOLUTE/PATH/TO/PARENT/REPO/FOLDER/src", "run", "jupyter_mcp_server.py" ] } } }
Replace
/ABSOLUTE/PATH/TO/
with the actual path to thesrc
folder on your system. For example:- Windows:
"C:\\Users\\MyUser\\GitHub\\jupyter-notebook-mcp\\src\\"
- Mac:
/Users/MyUser/GitHub/jupyter-notebook-mcp/src/
If you had previously opened Claude, then
File
>Exit
and open it again. - Windows:
Usage
Starting the Connection
-
Start your Jupyter Notebook (version 6.x) server:
uv run jupyter nbclassic
-
Create a new Jupyter Notebook and make sure that you choose the
jupyter-mcp
kernel:kernel
->change kernel
->jupyter-mcp
-
In a notebook cell, run the following code to initialize the WebSocket server:
import sys sys.path.append('/path/to/jupyter-notebook-mcp/src') # Add the path to where the scripts are located from jupyter_ws_server import setup_jupyter_mcp_integration # Start the WebSocket server inside Jupyter server, port = setup_jupyter_mcp_integration()
Don't forget to replace here
'/path/to/jupyter-notebook-mcp/src'
withsrc
folder on your system. For example:- Windows:
"C:\\Users\\MyUser\\GitHub\\jupyter-notebook-mcp\\src\\"
- Mac:
/Users/MyUser/GitHub/jupyter-notebook-mcp/src/
- Windows:
-
Launch Claude desktop with MCP enabled.
Using with Claude
Once connected, Claude will have access to the following tools:
-
ping
- Check server connectivity -
insert_and_execute_cell
- Insert a cell at the specified position and execute it -
save_notebook
- Save the current Jupyter notebook -
get_cells_info
- Get information about all cells in the notebook -
get_notebook_info
- Get information about the current notebook -
run_cell
- Run a specific cell by its index -
run_all_cells
- Run all cells in the notebook -
get_cell_text_output
- Get the output content of a specific cell -
get_image_output
- Get the images output of a specific cell -
edit_cell_content
- Edit the content of an existing cell -
set_slideshow_type
- Set the slide show type for cell
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
I find academic articles and books for research and literature reviews.
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
Reviews

user_7Dnpnr7J
I've been using the Jupyter_MCP_Server by shreyu258 for a while now, and it has significantly improved my workflow. The integration is seamless, and it provides a robust support for multiple coding projects simultaneously. Highly recommend checking out the project on GitHub: https://github.com/shreyu258/Jupyter_MCP_Server. The ease of use and efficient performance is remarkable!