Confidential guide on numerology and astrology, based of GG33 Public information

MCP_STARTER
Comment configurer le serveur MCP et le client MCP.
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
MCP Starter Project
What is MCP?
The Model Context Protocol (MCP) is a standard for building AI applications that can interact with external tools and APIs. It consists of two main components:
- MCP Server: A Python service that defines and exposes tools/functions that can be called by AI models
- MCP Client: A TypeScript/JavaScript client that connects to the MCP server and manages interactions between AI models and tools
Project Structure
mcp_starter/
├── mcp-server/ # Python MCP server implementation
│ ├── main.py # Server with documentation search tool
│ └── pyproject.toml # Python dependencies
└── mcp-clients/ # TypeScript MCP client implementation
├── index.ts # Express server with HuggingFace integration
└── package.json # Node.js dependencies
Getting Started
Prerequisites
- Python 3.11 or higher
- Node.js 18 or higher
- Hugging Face API key
- Serper API key for Google Search functionality
Setting Up the Server
- Create a Python virtual environment and activate it:
cd mcp-server
python -m venv .venv
# On Windows
.venv\Scripts\activate
- Install dependencies:
pip install -e .
- Create a
.env
file in themcp-server
directory:
SERPER_API_KEY=your_serper_api_key_here
Setting Up the Client
- Install Node.js dependencies:
cd mcp-clients
npm install
- Create a
.env
file in themcp-clients
directory:
HUGGINGFACE_API_KEY=your_huggingface_api_key_here
- Build the TypeScript code:
npm run build
Running the Application
- Start the MCP server:
cd mcp-server
python main.py
- In a new terminal, start the client server:
cd mcp-clients
node build/index.js ../mcp-server/main.py
Using the API
The client exposes two endpoints:
-
Health Check:
GET http://localhost:3000/health
-
Chat:
POST http://localhost:3000/chat
Example chat request:
{
"query": "Search the langchain docs for RAG",
"sessionId": "user123"
}
Features
-
Documentation Search Tool: Search documentation for popular AI libraries:
- LangChain
- LlamaIndex
- OpenAI
-
Conversation Management: Maintains chat history per session
-
Tool Integration: Seamlessly integrates AI model responses with tool calls
-
Error Handling: Robust error handling for API calls and tool execution
How It Works
- The MCP server defines tools that can be called by AI models
- The client connects to the MCP server and retrieves available tools
- When a user sends a query:
- The client formats the conversation history
- Sends it to the Hugging Face model
- Extracts and executes tool calls from the model's response
- Returns the final response including tool results
Environment Variables
Server
-
SERPER_API_KEY
: API key for Google Search functionality
Client
-
HUGGINGFACE_API_KEY
: API key for accessing Hugging Face models
License
MIT License
相关推荐
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Take an adjectivised noun, and create images making it progressively more adjective!
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
La communauté du curseur et de la planche à voile, recherchez des règles et des MCP
Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)
MCP Server pour récupérer le contenu de la page Web à l'aide du navigateur sans tête du dramwright.
Pont entre les serveurs Olllama et MCP, permettant aux LLM locaux d'utiliser des outils de protocole de contexte de modèle
🔍 Permettre aux assistants d'IA de rechercher et d'accéder aux informations du package PYPI via une interface MCP simple.
Reviews

user_0vwhohnW
As a loyal user of mcp_starter, I highly recommend this fantastic tool! It's incredibly easy to set up and has significantly improved my development workflows. Kudos to sharmatriloknath for creating such a valuable resource. For anyone looking to kickstart their projects efficiently, make sure to check it out at https://github.com/sharmatriloknath/mcp_starter!