
ES_MCP_SERVER
Elasticsearch MCP Server in Python
3 years
Works with Finder
1
Github Watches
0
Github Forks
1
Github Stars
Elasticsearch MCP Server
This project implements an MCP (Model Context Protocol) server for Elasticsearch, providing tools and resources to interact with Elasticsearch clusters.
Features
Tools
-
list_indices
: Lists all indices in the Elasticsearch cluster -
get_mappings
: Gets the mappings for a specific index -
search
: Performs an Elasticsearch search with a provided query DSL -
search_with_query_string
: Performs a search with a simple query string -
get_index_stats
: Gets statistics for a specific index
Resources
-
elasticsearch://indices
: Lists all Elasticsearch indices -
elasticsearch://index/{index_name}
: Gets detailed information about a specific index -
elasticsearch://mapping/{index_name}
: Gets mapping information for a specific index
Prerequisites
- Python 3.7+
- Elasticsearch Python client
- MCP SDK
- Elasticsearch cluster credentials (Cloud ID and API Key)
Setup
-
Clone the repository:
git clone https://github.com/yourusername/elasticsearch-mcp-server.git cd elasticsearch-mcp-server
-
Install the required dependencies:
pip install -r requirements.txt
-
Set up environment variables:
- Copy the example environment file:
cp .env.example .env
- Edit the
.env
file and add your Elasticsearch credentials
Or set them directly in your shell:
export ES_CLOUD_ID=your_elasticsearch_cloud_id export ES_API_KEY=your_elasticsearch_api_key
- Copy the example environment file:
Configuring the MCP Server for Claude
The configure_mcp_server.py
script helps you set up the Elasticsearch MCP server in Claude's MCP settings file. This allows Claude to connect to your Elasticsearch cluster through the MCP server.
python configure_mcp_server.py your_cloud_id your_api_key
This script:
- Takes your Elasticsearch Cloud ID and API Key as command-line arguments
- Locates or creates the Claude MCP settings file
- Adds or updates the Elasticsearch MCP server configuration
- Sets the environment variables needed for the server to connect to your Elasticsearch cluster
After running this script, restart VS Code to apply the changes. Claude will then be able to use the Elasticsearch MCP server to interact with your Elasticsearch cluster.
Testing the MCP Resources
Option 1: Using the Test Script
We've provided a test script that starts the MCP server and provides instructions for testing:
# Make the script executable if needed
chmod +x test_es_mcp.sh
# Run the test script
ES_CLOUD_ID=your_cloud_id ES_API_KEY=your_api_key ./test_es_mcp.sh
The script will:
- Start the MCP server in the background
- Provide instructions for testing the resources
- Keep the server running until you press Ctrl+C
Option 2: Manual Testing
-
Start the MCP server:
ES_CLOUD_ID=your_cloud_id ES_API_KEY=your_api_key python es_mcp_server.py
-
In Claude, use the
access_mcp_resource
tool to access the resources:a. List all indices:
<access_mcp_resource> <server_name>elasticsearch-mcp-server</server_name> <uri>elasticsearch://indices</uri> </access_mcp_resource>
b. Get information about a specific index:
<access_mcp_resource> <server_name>elasticsearch-mcp-server</server_name> <uri>elasticsearch://index/your_index_name</uri> </access_mcp_resource>
c. Get mapping for a specific index:
<access_mcp_resource> <server_name>elasticsearch-mcp-server</server_name> <uri>elasticsearch://mapping/your_index_name</uri> </access_mcp_resource>
Option 3: Using the Python Test Script
We've also provided a Python test script that demonstrates how to access the resources:
ES_CLOUD_ID=your_cloud_id ES_API_KEY=your_api_key python test_es_resources.py
Resource Details
elasticsearch://indices
Returns a JSON array of all indices in the Elasticsearch cluster, including:
- Index name
- Health status
- Status
- Document count
- Size
elasticsearch://index/{index_name}
Returns detailed information about a specific index, including:
- Index name
- Settings
- Statistics (document count, size in bytes and MB)
elasticsearch://mapping/{index_name}
Returns mapping information for a specific index, including:
- Complete mapping definition
- Field count
- Field type distribution
Error Handling
All resources include proper error handling and validation:
- If an index doesn't exist, the resource will return an appropriate error message
- If there's an issue connecting to Elasticsearch, the resource will return an error message
- All exceptions are caught and returned as readable error messages
Contributing
Contributions are welcome! Here's how you can contribute:
- Fork the repository
- Create a feature branch:
git checkout -b feature/your-feature-name
- Commit your changes:
git commit -am 'Add some feature'
- Push to the branch:
git push origin feature/your-feature-name
- Submit a pull request
GitHub Repository
This project is ready to be uploaded to GitHub. The repository includes:
-
.gitignore
file to exclude sensitive information and logs -
.env.example
file to guide users on setting up their environment variables -
requirements.txt
file to list dependencies -
LICENSE
file with the MIT License - Comprehensive documentation in the README.md
License
This project is licensed under the MIT License - see the LICENSE file for details.
相关推荐
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
🔥 1Panel bietet eine intuitive Weboberfläche und einen MCP -Server, um Websites, Dateien, Container, Datenbanken und LLMs auf einem Linux -Server zu verwalten.
⛓️Rugele ist ein leichter, leistungsstarker, leistungsstarker, eingebetteter Komponenten-Orchestrierungsregel-Motor-Rahmen für GO.
Ein Plugin-basiertes Gateway, das andere MCPs orchestriert und es Entwicklern ermöglicht, auf IT-Agenten zu bauen.
PDF wissenschaftliche Papierübersetzung mit erhaltenen Formaten - 基于 ai 完整保留排版的 pdf 文档全文双语翻译 , 支持 支持 支持 支持 google/deeptl/ollama/openai 等服务 提供 cli/gui/mcp/docker/zotero
Führen Sie vorhandene Server-basierte Server auf Modellkontextprotokoll (MCP) in AWS Lambda-Funktionen aus
Erstellen Sie einfach LLM -Tools und -Argarten mit einfachen Bash/JavaScript/Python -Funktionen.
😎简单易用、🧩丰富生态 - 大模型原生即时通信机器人平台 | 适配 qq / 微信(企业微信、个人微信) / 飞书 / 钉钉 / diskord / telegram / slack 等平台 | 支持 Chatgpt 、 Deepseek 、 Diffy 、 Claude 、 Gemini 、 xai 、 ppio 、 、 ulama 、 lm Studio 、阿里云百炼、火山方舟、 siliconflow 、 qwen 、 mondshot 、 chatglm 、 sillytraven 、 mcp 等 llm 的机器人 / agent | LLM-basierte Instant Messaging Bots-Plattform, unterstützt Zwietracht, Telegramm, Wechat, Lark, Dingtalk, QQ, Slack
Reviews

user_kc4VxYsI
I've been using es_mcp_server by sajitsasi for a while now, and it has significantly improved my workflows. Its robust features and seamless integration have made it an essential tool in my arsenal. The user-friendly interface and reliable performance are commendable. Highly recommended for anyone looking to optimize their server management!

user_w8Ibx3Aj
As a dedicated user of the es_mcp_server developed by sajitsasi, I can confidently say that this product has significantly streamlined my workflow. The seamless integration and outstanding performance have truly set it apart from other similar servers. Highly recommended for anyone in need of a dependable and efficient server solution!

user_xWensJgt
As a dedicated user of es_mcp_server by sajitsasi, I must say this product has exceeded my expectations. It's seamless, efficient, and truly user-friendly. Installation was straightforward, and navigating through it felt intuitive. Highly recommend it for anyone seeking a robust server solution.