Confidential guide on numerology and astrology, based of GG33 Public information

MIP-MCPP
Código con el papel RA-L'23-"Programación de enteros mixtos para la planificación de la ruta de cobertura múltiple de tiempo óptima con heurística"
3 years
Works with Finder
1
Github Watches
5
Github Forks
26
Github Stars
MIP-MCPP
This repository is the implementation of the MIP, MIP-PRH and MIP-SRH models for the Min-Max Rooted Tree Cover (MMRTC) problem and their corresponding planners for the graph-based multi-robot coverage path planning problem from the following paper:
Jingtao Tang and Hang Ma. "Mixed Integer Programming for Time-Optimal Multi-Robot Coverage Path Planning with Heuristics." IEEE Robotics and Automation Letters (Aug. 2023). [paper], [video], [project]
Please cite this article if you use this code for the multi-robot coverage path planning problem.
Installation
1. Python lib:
pip install -r requirements.txt
2. Gurobi lib:
optional if you don't want to run solver.py for MIP optimization. Pre-run model solutions are provided in directory 'data/solutions'.
Please refer to [Gurobi] for the installation. (they have trial and academic licenses)
Description
1. The MMRTC MIP Solver
The MCPP problem is reduced to the MMRTC problem and then solved with the STC algorithm. Please refer to the paper for more details.
Usage
python solver.py [-h] [--solver_cfg SOLVER_CFG] [--alpha ALPHA] [--beta BETA] [--warm_start WARM_START] istc
- Required:
-
istc
: the instance name stored in directory 'data/instances'.
-
- Optional:
-
--solver_cfg SOLVER_CFG
: path to the Gurobi configuration file. (see 'data/cfgs' for reference) -
alpha ALPHA
: parameter of Parabolic Removal Heuristics (PRH). Will solve the MIP-PRH model if specified. -
beta BETA
: parameter of Subgraph Removal Heuristics (SRH). Will solve the MIP-SRH model if specified. -
--warm_start WARM_START
: type of warm-startup for the model optimization. Use 'RTC' for the original MIP model and 'MST' for MIP-PRH and MIP-SRH.
-
2. The Instance Maker
A simple routine to create random MMRTC instance.
- if map is provided, then a terrain with uniform terrain weight of 1 is generated, encoded by:
- obstacle vertex: black pixel, rgb=(0,0,0)
- free vertex: white pixel, rgb=(1,1,1)
- root vertex: red pixel, rgb=(1,0,0)
- otherwise, an empty terrain with random weights will be generated.
Usage
python instance_maker.py [-h] [--map MAP] name
-
Required:
-
name
: the instance name in the format of '[grid width]x[grid height]-[Characteristics]-k[# of roots]'.- If no map is provided, the generated instance is a
[grid width]
x[grid height]
empty terrain with[# of roots]
subtrees (or robots) and randomized terrain weights.
- If no map is provided, the generated instance is a
-
-
Optional:
-
--map MAP
: path to the map to create the instance.
-
3. The MCPP Planner
The MCPP planners with simulation, including MFC, MSTC$^*$ and MIP (the method in this paper).
Usage:
python planner.py [-h] [--method METHOD] [--istc_sol_name ISTC_SOL_NAME] [--scale SCALE] [--dt DT] [--write WRITE] istc
- Required:
-
istc
: the instance name stored in directory 'data/instances'.
-
- Optional:
-
--method METHOD
: planner type choose from {MFC, MSTC*, MIP}. -
-istc_sol_name ISTC_SOL_NAME
: MIP solution name stored in the directroy 'data/solutions'. (only required when planner type is MIP) -
--scale SCALE
: the canvas scaling factor for visualization. -
--dt DT
: delta time of simulation. -
--write WRITE
: is writing the simulation as MP4. (ffmpeg lib is required)
-
MCPP Simulation Results
- The floor-medium instance using the MMRTC solution from MIP-SRH model
License
MIP-MCPP is released under the GPL version 3. See LICENSE.txt for further details.
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
🔥 1Panel proporciona una interfaz web intuitiva y un servidor MCP para administrar sitios web, archivos, contenedores, bases de datos y LLM en un servidor de Linux.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Servidores AWS MCP: servidores MCP especializados que traen las mejores prácticas de AWS directamente a su flujo de trabajo de desarrollo
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Servidores MCP impresionantes: una lista curada de servidores de protocolo de contexto del modelo
Reviews

user_E7Xh7mJp
I have been using MIP-MCPP for a while now, and I must say it's a phenomenal tool created by reso1. It excels in delivering a seamless experience with its robust language support and intuitive interface. The project links and extensive documentation have made integration incredibly easy. Highly recommended for anyone looking to enhance their MCP applications. Check it out at https://github.com/reso1/MIP-MCPP!