I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

mcp-server-llmling
MCP (Model context protocol) server with LLMling backend
1
Github Watches
2
Github Forks
5
Github Stars
mcp-server-llmling
LLMling Server Manual
Overview
mcp-server-llmling is a server for the Machine Chat Protocol (MCP) that provides a YAML-based configuration system for LLM applications.
LLMLing, the backend, provides a YAML-based configuration system for LLM applications. It allows to set up custom MCP servers serving content defined in YAML files.
- Static Declaration: Define your LLM's environment in YAML - no code required
- MCP Protocol: Built on the Machine Chat Protocol (MCP) for standardized LLM interaction
-
Component Types:
- Resources: Content providers (files, text, CLI output, etc.)
- Prompts: Message templates with arguments
- Tools: Python functions callable by the LLM
The YAML configuration creates a complete environment that provides the LLM with:
- Access to content via resources
- Structured prompts for consistent interaction
- Tools for extending capabilities
Key Features
1. Resource Management
- Load and manage different types of resources:
- Text files (
PathResource
) - Raw text content (
TextResource
) - CLI command output (
CLIResource
) - Python source code (
SourceResource
) - Python callable results (
CallableResource
) - Images (
ImageResource
)
- Text files (
- Support for resource watching/hot-reload
- Resource processing pipelines
- URI-based resource access
2. Tool System
- Register and execute Python functions as LLM tools
- Support for OpenAPI-based tools
- Entry point-based tool discovery
- Tool validation and parameter checking
- Structured tool responses
3. Prompt Management
- Static prompts with template support
- Dynamic prompts from Python functions
- File-based prompts
- Prompt argument validation
- Completion suggestions for prompt arguments
4. Multiple Transport Options
- Stdio-based communication (default)
- Server-Sent Events (SSE) for web clients
- Support for custom transport implementations
Usage
With Zed Editor
Add LLMLing as a context server in your settings.json
:
{
"context_servers": {
"llmling": {
"command": {
"env": {},
"label": "llmling",
"path": "uvx",
"args": [
"mcp-server-llmling",
"start",
"path/to/your/config.yml"
]
},
"settings": {}
}
}
}
With Claude Desktop
Configure LLMLing in your claude_desktop_config.json
:
{
"mcpServers": {
"llmling": {
"command": "uvx",
"args": [
"mcp-server-llmling",
"start",
"path/to/your/config.yml"
],
"env": {}
}
}
}
Manual Server Start
Start the server directly from command line:
# Latest version
uvx mcp-server-llmling@latest
1. Programmatic usage
from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer
async def main() -> None:
async with RuntimeConfig.open(config) as runtime:
server = LLMLingServer(runtime, enable_injection=True)
await server.start()
asyncio.run(main())
2. Using Custom Transport
from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer
async def main() -> None:
async with RuntimeConfig.open(config) as runtime:
server = LLMLingServer(
config,
transport="sse",
transport_options={
"host": "localhost",
"port": 8000,
"cors_origins": ["http://localhost:3000"]
}
)
await server.start()
asyncio.run(main())
3. Resource Configuration
resources:
python_code:
type: path
path: "./src/**/*.py"
watch:
enabled: true
patterns:
- "*.py"
- "!**/__pycache__/**"
api_docs:
type: text
content: |
API Documentation
================
...
4. Tool Configuration
tools:
analyze_code:
import_path: "mymodule.tools.analyze_code"
description: "Analyze Python code structure"
toolsets:
api:
type: openapi
spec: "https://api.example.com/openapi.json"
namespace: "api"
Server Configuration
The server is configured through a YAML file with the following sections:
global_settings:
timeout: 30
max_retries: 3
log_level: "INFO"
requirements: []
pip_index_url: null
extra_paths: []
resources:
# Resource definitions...
tools:
# Tool definitions...
toolsets:
# Toolset definitions...
prompts:
# Prompt definitions...
MCP Protocol
The server implements the MCP protocol which supports:
-
Resource Operations
- List available resources
- Read resource content
- Watch for resource changes
-
Tool Operations
- List available tools
- Execute tools with parameters
- Get tool schemas
-
Prompt Operations
- List available prompts
- Get formatted prompts
- Get completions for prompt arguments
-
Notifications
- Resource changes
- Tool/prompt list updates
- Progress updates
- Log messages
相关推荐
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.
The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
Fair-code workflow automation platform with native AI capabilities. Combine visual building with custom code, self-host or cloud, 400+ integrations.
Mirror ofhttps://github.com/agentience/practices_mcp_server
🧑🚀 全世界最好的LLM资料总结(Agent框架、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.
Reviews

user_5OruX6PG
I've been using the mcp-server-llmling by phil65 for a while now, and it's truly impressive. The seamless integration and robust features have greatly enhanced my workflow. It's reliable, efficient, and the community support is fantastic. Highly recommend checking it out on GitHub!