
NCVreg
Regularisierungspfade für SCAD- und MCP-penalisierte Regressionsmodelle
6
Github Watches
28
Github Forks
42
Github Stars
Regularization paths for MCP and SCAD penalized regression models
ncvreg
is an R package for fitting regularization paths for linear
regression, GLM, and Cox regression models using lasso or nonconvex
penalties, in particular the minimax concave penalty (MCP) and smoothly
clipped absolute deviation (SCAD) penalty, with options for additional
L2 penalties (the "elastic net" idea). Utilities for carrying
out cross-validation as well as post-fitting visualization,
summarization, inference, and prediction are also provided.
- To get started using
ncvreg
, see the "getting started" vignette - To learn more, follow the links under "Learn more" at the ncvreg website
- For details on the algorithms used by
ncvreg
, see the original article: Breheny P and Huang J (2011) Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Annals of Applied Statistics, 5: 232–253 - For more about the marginal false discovery rate idea used for post-selection inference, see Breheny P (2019) Marginal false discovery rates for penalized regression models. Biostatistics, 20: 299-314 and Miller R and Breheny P (2023) Feature-specific inference for penalized regression using local false discovery rates. Statistics in Medicine, 42: 1412–1429.
- I also teach a course on high-dimensional data analysis; the lecture notes are publicly available and may be helpful, in particular the lectures on MCP/SCAD and marginal FDR.
Installation
To install the latest release version from CRAN:
install.packages("ncvreg")
To install the latest development version from GitHub:
remotes::install_github("pbreheny/ncvreg")
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.
Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
Fair-Code-Workflow-Automatisierungsplattform mit nativen KI-Funktionen. Kombinieren Sie visuelles Gebäude mit benutzerdefiniertem Code, SelbstHost oder Cloud, 400+ Integrationen.
Reviews

user_NQzHIWgo
As a dedicated user of MCP application, I highly recommend ncvreg by pbreheny. This comprehensive tool offers efficient regularization paths for linear and logistic regression models, tailored especially for high-dimensional data. Its integration and functionality within the R environment are seamless, making it an invaluable resource for statistical analysis and research. Highly efficient and user-friendly!