Confidential guide on numerology and astrology, based of GG33 Public information

Deep-Forearch-MCP
3 years
Works with Finder
1
Github Watches
7
Github Forks
66
Github Stars
Open Deep Research MCP Server
An AI-powered research assistant that performs deep, iterative research on any topic. It combines search engines, web scraping, and AI to explore topics in depth and generate comprehensive reports. Available as a Model Context Protocol (MCP) tool or standalone CLI. Look at exampleout.md to see what a report might look like.
Quick Start
- Clone and install:
git clone https://github.com/Ozamatash/deep-research
cd deep-research
npm install
- Set up environment in
.env.local
:
# Copy the example environment file
cp .env.example .env.local
- Build:
# Build the server
npm run build
- Run the cli version:
npm run start "Your research query here"
- Test MCP Server with Claude Desktop:
Follow the guide thats at the bottom of server quickstart to add the server to Claude Desktop:
https://modelcontextprotocol.io/quickstart/server
Features
- Performs deep, iterative research by generating targeted search queries
- Controls research scope with depth (how deep) and breadth (how wide) parameters
- Evaluates source reliability with detailed scoring (0-1) and reasoning
- Prioritizes high-reliability sources (≥0.7) and verifies less reliable information
- Generates follow-up questions to better understand research needs
- Produces detailed markdown reports with findings, sources, and reliability assessments
- Available as a Model Context Protocol (MCP) tool for AI agents
- For now MCP version doesn't ask follow up questions
How It Works
flowchart TB
subgraph Input
Q[User Query]
B[Breadth Parameter]
D[Depth Parameter]
FQ[Feedback Questions]
end
subgraph Research[Deep Research]
direction TB
SQ[Generate SERP Queries]
SR[Search]
RE[Source Reliability Evaluation]
PR[Process Results]
end
subgraph Results[Research Output]
direction TB
L((Learnings with
Reliability Scores))
SM((Source Metadata))
ND((Next Directions:
Prior Goals,
New Questions))
end
%% Main Flow
Q & FQ --> CQ[Combined Query]
CQ & B & D --> SQ
SQ --> SR
SR --> RE
RE --> PR
%% Results Flow
PR --> L
PR --> SM
PR --> ND
%% Depth Decision and Recursion
L & ND --> DP{depth > 0?}
DP -->|Yes| SQ
%% Final Output
DP -->|No| MR[Markdown Report]
%% Styling
classDef input fill:#7bed9f,stroke:#2ed573,color:black
classDef process fill:#70a1ff,stroke:#1e90ff,color:black
classDef output fill:#ff4757,stroke:#ff6b81,color:black
classDef results fill:#a8e6cf,stroke:#3b7a57,color:black,width:150px,height:150px
class Q,B,D,FQ input
class SQ,SR,RE,PR process
class MR output
class L,SM,ND results
Advanced Setup
Using Local Firecrawl (Free Option)
Instead of using the Firecrawl API, you can run a local instance. You can use the official repo or my fork which uses searXNG as the search backend to avoid using a searchapi key:
- Set up local Firecrawl:
git clone https://github.com/Ozamatash/localfirecrawl
cd localfirecrawl
# Follow setup in localfirecrawl README
- Update
.env.local
:
FIRECRAWL_BASE_URL="http://localhost:3002"
Optional: Observability
Add observability to track research flows, queries, and results using Langfuse:
# Add to .env.local
LANGFUSE_PUBLIC_KEY="your_langfuse_public_key"
LANGFUSE_SECRET_KEY="your_langfuse_secret_key"
The app works normally without observability if no Langfuse keys are provided.
License
MIT License
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
🔥 1Panel bietet eine intuitive Weboberfläche und einen MCP -Server, um Websites, Dateien, Container, Datenbanken und LLMs auf einem Linux -Server zu verwalten.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
AWS MCP -Server - Spezielle MCP -Server, die AWS -Best Practices direkt in Ihren Entwicklungsworkflow bringen
Awesome MCP -Server - eine kuratierte Liste von Modellkontext -Protokollservern für Modellkontext
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
Reviews

user_fheT0rW7
As a dedicated user of the deep-research-mcp, I am consistently impressed by its robust capabilities and user-friendly interface. Ozamatash has truly crafted a tool that significantly enhances my research efficiency. The seamless integration and extensive features offered by the deep-research-mcp make it an indispensable asset for any researcher. Highly recommended!