Confidential guide on numerology and astrology, based of GG33 Public information

Custom-Context-MCP
Dieser MCP -Server (Modellkontextprotokoll) bietet Tools zum Strukturieren und Extrahieren von Daten aus Text gemäß JSON -Vorlagen.
3 years
Works with Finder
1
Github Watches
0
Github Forks
1
Github Stars
Custom Context MCP Server
This Model Context Protocol (MCP) server provides tools for structuring and extracting data from text according to JSON templates.
Features
Text-to-JSON Transformation
- Group and structure text based on JSON templates with placeholders
- Extract information from AI-generated text into structured JSON formats
- Support for any arbitrary JSON structure with nested placeholders
- Intelligent extraction of key-value pairs from text
- Process AI outputs into structured data for downstream applications
Getting Started
Installation
npm install
Running the server
npm start
For development with hot reloading:
npm run dev:watch
Usage
This MCP server provides two main tools:
1. Group Text by JSON (group-text-by-json
)
This tool takes a JSON template with placeholders and generates a prompt for an AI to group text according to the template's structure.
{
"template": "{ \"type\": \"<type>\", \"text\": \"<text>\" }"
}
The tool analyzes the template, extracts placeholder keys, and returns a prompt that guides the AI to extract information in a key-value format.
2. Text to JSON (text-to-json
)
This tool takes the grouped text output from the previous step and converts it into a structured JSON object based on the original template.
{
"template": "{ \"type\": \"<type>\", \"text\": \"<text>\" }",
"text": "type: pen\ntext: This is a blue pen"
}
It extracts key-value pairs from the text and structures them according to the template.
Example Workflow
-
Define a JSON template with placeholders:
{ "item": { "name": "<name>", "price": "<price>", "description": "<description>" } }
-
Use
group-text-by-json
to create a prompt for AI:- The tool identifies placeholder keys: name, price, description
- Generates a prompt instructing the AI to group information by these keys
-
Send the prompt to an AI model and receive grouped text:
name: Blue Pen price: $2.99 description: A smooth-writing ballpoint pen with blue ink
-
Use
text-to-json
to convert the grouped text to JSON:- Result:
{ "item": { "name": "Blue Pen", "price": "$2.99", "description": "A smooth-writing ballpoint pen with blue ink" } }
Template Format
Templates can include placeholders anywhere within a valid JSON structure:
- Use angle brackets to define placeholders:
<name>
,<type>
,<price>
, etc. - The template must be a valid JSON string
- Placeholders can be at any level of nesting
- Supports complex nested structures
Example template with nested placeholders:
{
"product": {
"details": {
"name": "<name>",
"category": "<category>"
},
"pricing": {
"amount": "<price>",
"currency": "USD"
}
},
"metadata": {
"timestamp": "2023-09-01T12:00:00Z"
}
}
Implementation Details
The server works by:
- Analyzing JSON templates to extract placeholder keys
- Generating prompts that guide AI models to extract information by these keys
- Parsing AI-generated text to extract key-value pairs
- Reconstructing JSON objects based on the original template structure
Development
Prerequisites
- Node.js v18 or higher
- npm or yarn
Build and Run
# Install dependencies
npm install
# Build the project
npm run build
# Run the server
npm start
# Development with hot reloading
npm run dev:watch
Custom Hot Reloading
This project includes a custom hot reloading setup that combines:
- nodemon: Watches for file changes in the src directory and rebuilds TypeScript files
- browser-sync: Automatically refreshes the browser when build files change
- Concurrent execution: Runs both services simultaneously with output synchronization
The setup is configured in:
-
nodemon.json
: Controls TypeScript watching and rebuilding -
package.json
: Uses concurrently to run nodemon and browser-sync together
To use the custom hot reloading feature:
npm run dev:watch
This creates a development environment where:
- TypeScript files are automatically rebuilt when changed
- The MCP server restarts with the updated code
- Connected browsers refresh to show the latest changes
Using with MCP Inspector
You can use the MCP Inspector for debugging:
npm run dev
This runs the server with the MCP Inspector for visual debugging of requests and responses.
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
I find academic articles and books for research and literature reviews.
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
Reviews

user_ywfoLCzB
I've been using custom-context-mcp by omer-ayhan for a while now, and it's truly a game-changer for managing multiple contexts with ease. The seamless integration and intuitive interface make it a must-have tool for any developer. Highly recommend checking it out on GitHub!