I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

Delfinschoner-MCP
Ein Modellkontext -Protokollserver (MCP) für Apache DolphinScheduler. Dies bietet Zugriff auf Ihre Api V1 -Instanz und das umgebende Ökosystem.
1
Github Watches
1
Github Forks
3
Github Stars
DolphinScheduler MCP Server
A Model Context Protocol (MCP) server for Apache DolphinScheduler, allowing AI agents to interact with DolphinScheduler through a standardized protocol.
Overview
DolphinScheduler MCP provides a FastMCP-based server that exposes DolphinScheduler's REST API as a collection of tools that can be used by AI agents. The server acts as a bridge between AI models and DolphinScheduler, enabling AI-driven workflow management.
Features
- Full API coverage of DolphinScheduler functionality
- Standardized tool interfaces following the Model Context Protocol
- Easy configuration through environment variables or command-line arguments
- Comprehensive tool documentation
Installation
pip install dolphinscheduler-mcp
Configuration
Environment Variables
-
DOLPHINSCHEDULER_API_URL
: URL for the DolphinScheduler API (default: http://localhost:12345/dolphinscheduler) -
DOLPHINSCHEDULER_API_KEY
: API token for authentication with the DolphinScheduler API -
DOLPHINSCHEDULER_MCP_HOST
: Host to bind the MCP server (default: 0.0.0.0) -
DOLPHINSCHEDULER_MCP_PORT
: Port to bind the MCP server (default: 8089) -
DOLPHINSCHEDULER_MCP_LOG_LEVEL
: Logging level (default: INFO)
Usage
Command Line
Start the server using the command-line interface:
ds-mcp --host 0.0.0.0 --port 8089
Python API
from dolphinscheduler_mcp.server import run_server
# Start the server
run_server(host="0.0.0.0", port=8089)
Available Tools
The DolphinScheduler MCP Server provides tools for:
- Project Management
- Process Definition Management
- Process Instance Management
- Task Definition Management
- Scheduling Management
- Resource Management
- Data Source Management
- Alert Group Management
- Alert Plugin Management
- Worker Group Management
- Tenant Management
- User Management
- System Status Monitoring
Example Client Usage
from mcp_client import MCPClient
# Connect to the MCP server
client = MCPClient("http://localhost:8089/mcp")
# Get a list of projects
response = await client.invoke_tool("get-project-list")
# Create a new project
response = await client.invoke_tool(
"create-project",
{"name": "My AI Project", "description": "Project created by AI"}
)
License
Apache License 2.0
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Mirror ofhttps: //github.com/bitrefill/bitrefill-mcp-server
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
Reviews

user_v2h6PfLs
I've been an avid user of dolphinscheduler-mcp by ocean-zhc, and it has significantly streamlined my workflow. The intuitive interface and robust features make complex data scheduling a breeze. Highly recommend checking it out on GitHub if you're in need of a reliable data scheduling tool. Great job, ocean-zhc!