Cover image
Deepseek-Thinking-Claude-3.5-SONNET-CLINE-MCP
Private

Deepseek-Thinking-Claude-3.5-SONNET-CLINE-MCP

Try Now
2025-02-02

🧠 MCP -Server implementieren Sie RAT (Abrufen erweitertes Denken) - Kombiniert Deepseeks Argumentation mit GPT -4/Claude/Mistral -Antworten und behält den Konversationskontext zwischen Interaktionen auf.

3 years

Works with Finder

1

Github Watches

21

Github Forks

104

Github Stars

Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP

smithery badge

A Model Context Protocol (MCP) server that combines DeepSeek R1's reasoning capabilities with Claude 3.5 Sonnet's response generation through OpenRouter. This implementation uses a two-stage process where DeepSeek provides structured reasoning which is then incorporated into Claude's response generation.

Features

  • Two-Stage Processing:

    • Uses DeepSeek R1 for initial reasoning (50k character context)
    • Uses Claude 3.5 Sonnet for final response (600k character context)
    • Both models accessed through OpenRouter's unified API
    • Injects DeepSeek's reasoning tokens into Claude's context
  • Smart Conversation Management:

    • Detects active conversations using file modification times
    • Handles multiple concurrent conversations
    • Filters out ended conversations automatically
    • Supports context clearing when needed
  • Optimized Parameters:

    • Model-specific context limits:
      • DeepSeek: 50,000 characters for focused reasoning
      • Claude: 600,000 characters for comprehensive responses
    • Recommended settings:
      • temperature: 0.7 for balanced creativity
      • top_p: 1.0 for full probability distribution
      • repetition_penalty: 1.0 to prevent repetition

Installation

Installing via Smithery

To install DeepSeek Thinking with Claude 3.5 Sonnet for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @newideas99/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP --client claude

Manual Installation

  1. Clone the repository:
git clone https://github.com/yourusername/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP.git
cd Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP
  1. Install dependencies:
npm install
  1. Create a .env file with your OpenRouter API key:
# Required: OpenRouter API key for both DeepSeek and Claude models
OPENROUTER_API_KEY=your_openrouter_api_key_here

# Optional: Model configuration (defaults shown below)
DEEPSEEK_MODEL=deepseek/deepseek-r1  # DeepSeek model for reasoning
CLAUDE_MODEL=anthropic/claude-3.5-sonnet:beta  # Claude model for responses
  1. Build the server:
npm run build

Usage with Cline

Add to your Cline MCP settings (usually in ~/.vscode/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json):

{
  "mcpServers": {
    "deepseek-claude": {
      "command": "/path/to/node",
      "args": ["/path/to/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP/build/index.js"],
      "env": {
        "OPENROUTER_API_KEY": "your_key_here"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Tool Usage

The server provides two tools for generating and monitoring responses:

generate_response

Main tool for generating responses with the following parameters:

{
  "prompt": string,           // Required: The question or prompt
  "showReasoning"?: boolean, // Optional: Show DeepSeek's reasoning process
  "clearContext"?: boolean,  // Optional: Clear conversation history
  "includeHistory"?: boolean // Optional: Include Cline conversation history
}

check_response_status

Tool for checking the status of a response generation task:

{
  "taskId": string  // Required: The task ID from generate_response
}

Response Polling

The server uses a polling mechanism to handle long-running requests:

  1. Initial Request:

    • generate_response returns immediately with a task ID
    • Response format: {"taskId": "uuid-here"}
  2. Status Checking:

    • Use check_response_status to poll the task status
    • Note: Responses can take up to 60 seconds to complete
    • Status progresses through: pending → reasoning → responding → complete

Example usage in Cline:

// Initial request
const result = await use_mcp_tool({
  server_name: "deepseek-claude",
  tool_name: "generate_response",
  arguments: {
    prompt: "What is quantum computing?",
    showReasoning: true
  }
});

// Get taskId from result
const taskId = JSON.parse(result.content[0].text).taskId;

// Poll for status (may need multiple checks over ~60 seconds)
const status = await use_mcp_tool({
  server_name: "deepseek-claude",
  tool_name: "check_response_status",
  arguments: { taskId }
});

// Example status response when complete:
{
  "status": "complete",
  "reasoning": "...",  // If showReasoning was true
  "response": "..."    // The final response
}

Development

For development with auto-rebuild:

npm run watch

How It Works

  1. Reasoning Stage (DeepSeek R1):

    • Uses OpenRouter's reasoning tokens feature
    • Prompt is modified to output 'done' while capturing reasoning
    • Reasoning is extracted from response metadata
  2. Response Stage (Claude 3.5 Sonnet):

    • Receives the original prompt and DeepSeek's reasoning
    • Generates final response incorporating the reasoning
    • Maintains conversation context and history

License

MIT License - See LICENSE file for details.

Credits

Based on the RAT (Retrieval Augmented Thinking) concept by Skirano, which enhances AI responses through structured reasoning and knowledge retrieval.

This implementation specifically combines DeepSeek R1's reasoning capabilities with Claude 3.5 Sonnet's response generation through OpenRouter's unified API.

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • pontusab
  • Die Cursor & Windsurf -Community finden Regeln und MCPs

  • jae-jae
  • MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.

  • ravitemer
  • Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)

  • patruff
  • Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden

  • av
  • Führen Sie mühelos LLM -Backends, APIs, Frontends und Dienste mit einem Befehl aus.

  • Mintplex-Labs
  • Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.

  • appcypher
  • Awesome MCP -Server - eine kuratierte Liste von Modellkontext -Protokollservern für Modellkontext

  • 1Panel-dev
  • 🔥 1Panel bietet eine intuitive Weboberfläche und einen MCP -Server, um Websites, Dateien, Container, Datenbanken und LLMs auf einem Linux -Server zu verwalten.

    Reviews

    3 (1)
    Avatar
    user_uNRhOQn8
    2025-04-17

    I'm thoroughly impressed with the Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP by newideas99. It demonstrates remarkable performance and versatile application, making it an invaluable addition to my toolkit. The seamless integration and intuitive interface enhance productivity significantly. Highly recommend!