I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

Twitter-MCP-Server-für-Claude
1
Github Watches
2
Github Forks
0
Github Stars
Building a Twitter Trends Analysis MCP Server for Claude
This tutorial will guide you through creating a Model Context Protocol (MCP) server that connects Twitter's trending topics with Claude's analysis capabilities. The server will fetch real-time Twitter trends and use Claude to analyze them for business opportunities.
Prerequisites
- Python 3.8 or higher
- Claude Desktop installed
- Twitter Developer Account with API access
- Basic understanding of Python
Part 1: Setting Up the Environment
- Create a new project directory:
mkdir twitter-trends-mcp
cd twitter-trends-mcp
- Set up a virtual environment:
python -m venv .venv
.venv\Scripts\activate # On Windows
- Install required packages:
pip install tweepy mcp python-dotenv hatchling
Part 2: Project Structure
Create the following directory structure:
twitter-trends-mcp/
├── pyproject.toml
├── twitter_server_run.py
├── src/
│ └── twitter_trends_mcp/
│ ├── __init__.py
│ └── server.py
Part 3: Configuration Files
- Create
pyproject.toml
in the root directory:
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[project]
name = "twitter-trends-mcp"
version = "0.1.0"
description = "Twitter Trends MCP Server"
requires-python = ">=3.8"
dependencies = [
"tweepy",
"mcp",
"python-dotenv"
]
[tool.hatch.build]
packages = ["src/twitter_trends_mcp"]
include = ["src/twitter_trends_mcp/*"]
[project.scripts]
twitter-trends-server = "twitter_trends_mcp:main"
- Create
src/twitter_trends_mcp/__init__.py
:
"""Twitter Trends MCP Server package."""
import asyncio
from . import server
def main():
"""Main entry point for the package."""
asyncio.run(server.main())
__all__ = ['main', 'server']
- Create entry point file
twitter_server_run.py
:
#!/usr/bin/env python
import os
import sys
import logging
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('twitter_server.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger('twitter-trends-mcp')
# Add the src directory to the Python path
src_path = str(Path(__file__).parent / "src")
sys.path.insert(0, src_path)
logger.info(f"Python path: {sys.path}")
try:
from twitter_trends_mcp.server import main
logger.info("Successfully imported server module")
except Exception as e:
logger.error(f"Error importing server module: {e}")
raise
if __name__ == "__main__":
try:
logger.info("Starting server...")
import asyncio
asyncio.run(main())
except KeyboardInterrupt:
logger.info("Server stopped by user")
except Exception as e:
logger.error(f"Server error: {e}")
raise
Part 4: Twitter API Setup
- Go to Twitter Developer Portal
- Create a new project and app
- Get your API credentials:
- API Key
- API Secret
- Access Token
- Access Token Secret
- Bearer Token
Part 5: MCP Server Implementation
Create src/twitter_trends_mcp/server.py
with the complete server code, including:
- API client initialization
- Trend fetching logic
- Resource and tool handlers
- Analysis integration with Claude
Key components:
# Initialize Twitter clients
client_v2 = tweepy.Client(...)
auth = tweepy.OAuthHandler(...)
api_v1 = tweepy.API(auth)
# Define server capabilities
app = Server("twitter-trends-server")
# Implement handlers
@app.list_resources()
async def list_resources() -> list[Resource]: ...
@app.read_resource()
async def read_resource(uri: AnyUrl) -> str: ...
@app.list_tools()
async def list_tools() -> list[Tool]: ...
@app.call_tool()
async def call_tool(name: str, arguments: Any) -> Sequence[TextContent]: ...
Part 6: Claude Desktop Configuration
-
Locate your Claude Desktop config file:
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
-
Update the configuration:
{
"mcpServers": {
"twitter-trends": {
"command": "C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp\\.venv\\Scripts\\python.exe",
"args": ["C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp\\twitter_server_run.py"],
"env": {
"PYTHONPATH": "C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp\\src",
"PYTHONUNBUFFERED": "1"
},
"cwd": "C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp"
}
}
}
Part 7: Running and Testing
- Install the package:
pip install -e .
- Run server:
python twitter_server_run.py
-
In Claude Desktop:
- Click the 🔌 icon
- Look for "twitter-trends"
- Try: "Analyze current Twitter trends for SaaS opportunities"
-
Monitor logs:
Get-Content twitter_server.log -Wait
Troubleshooting Tips
-
Common Issues:
- Module not found: Check PYTHONPATH
- Connection errors: Verify paths in config
- API errors: Validate credentials
- Server not responding: Check logs
-
Log Locations:
- Server:
twitter_server.log
- Claude:
%APPDATA%\Claude\Logs\mcp*.log
- Server:
Features
- Real-time trend fetching
- Category-based analysis
- Business opportunity identification
- AI-powered insights
- Detailed logging
Best Practices
- Use absolute paths
- Keep credentials secure
- Monitor logs
- Test incrementally
- Use virtual environments
Next Steps
- Add trend history
- Implement sentiment analysis
- Support more regions
- Add business metrics
- Enhance analysis categories
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
I find academic articles and books for research and literature reviews.
This GPT assists in finding a top-rated business CPA - local or virtual. We account for their qualifications, experience, testimonials and reviews. Business operators provide a short description of your business, services wanted, and city or state.
Confidential guide on numerology and astrology, based of GG33 Public information
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Ein einheitliches API-Gateway zur Integration mehrerer Ethercan-ähnlicher Blockchain-Explorer-APIs mit Modellkontextprotokoll (MCP) für AI-Assistenten.
Reviews

user_mgUm2Acz
I've been using MCP Server Example for a few months now, and it's been a game-changer. The seamless integration and intuitive interface make managing servers incredibly straightforward. The detailed documentation provided by the author, pHo9UBenaA, is also top-notch, ensuring even beginners can get up to speed quickly. Highly recommended! Check it out here: https://mcp.so/server/mcp-server-example/pHo9UBenaA