Confidential guide on numerology and astrology, based of GG33 Public information

YouTube-Vision-MCP
Der MCP -Server (Modellkontextprotokoll), der die Google Gemini Vision -API verwendet, um mit YouTube -Videos zu interagieren.
3 years
Works with Finder
1
Github Watches
0
Github Forks
2
Github Stars
YouTube Vision MCP Server (youtube-vision
)
MCP (Model Context Protocol) server that utilizes the Google Gemini Vision API to interact with YouTube videos. It allows users to get descriptions, summaries, answers to questions, and extract key moments from YouTube videos.
Features
- Analyzes YouTube videos using the Gemini Vision API.
- Provides multiple tools for different interactions:
- General description or Q&A (
ask_about_youtube_video
) - Summarization (
summarize_youtube_video
) - Key moment extraction (
extract_key_moments
)
- General description or Q&A (
- Lists available Gemini models supporting
generateContent
. - Configurable Gemini model via environment variable.
- Communicates via stdio (standard input/output).
Prerequisites
Before using this server, ensure you have the following:
- Node.js: Version 18 or higher recommended. You can download it from nodejs.org.
- Google Gemini API Key: Obtain your API key from Google AI Studio or Google Cloud Console.
Installation & Usage
There are two main ways to use this server:
Installing via Smithery
To install youtube-vision-mcp for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @minbang930/youtube-vision-mcp --client claude
Option 1: Using npx (Recommended for quick use)
The easiest way to run this server is using npx
, which downloads and runs the package without needing a permanent installation.
You can configure it within your MCP client's settings file (Claude, VSCode .. ):
{
"mcpServers": {
"youtube-vision": {
"command": "npx",
"args": [
"-y",
"youtube-vision"
],
"env": {
"GEMINI_API_KEY": "YOUR_GEMINI_API_KEY",
"GEMINI_MODEL_NAME": "gemini-2.0-flash"
}
}
}
}
Replace "YOUR_GEMINI_API_KEY"
with your actual Google Gemini API key.
Option 2: Manual Installation (from Source)
If you want to modify the code or run it directly from the source:
-
Clone the repository:
git clone https://github.com/minbang930/Youtube-Vision-MCP.git cd youtube-vision
-
Install dependencies:
npm install
-
Build the project:
npm run build
-
Configure and run: You can then run the compiled code using
node dist/index.js
directly (ensureGEMINI_API_KEY
is set as an environment variable) or configure your MCP client to run it using thenode
command and the absolute path todist/index.js
, passing the API key via theenv
setting as shown in the npx example.
Configuration
The server uses the following environment variables:
-
GEMINI_API_KEY
(Required): Your Google Gemini API key. -
GEMINI_MODEL_NAME
(Optional): The specific Gemini model to use (e.g.,gemini-1.5-flash
). Defaults togemini-2.0-flash
. Important: For production or commercial use, ensure you select a model version that is not marked as "Experimental" or "Preview".
Environment variables should be set in the env
section of your MCP client's settings file (e.g., mcp_settings.json
).
Available Tools
1. ask_about_youtube_video
Answers a question about the video or provides a general description if no question is asked.
-
Input:
-
youtube_url
(string, required): The URL of the YouTube video. -
question
(string, optional): The specific question to ask about the video. If omitted, a general description is generated.
-
- Output: Text containing the answer or description.
2. summarize_youtube_video
Generates a summary of a given YouTube video.
-
Input:
-
youtube_url
(string, required): The URL of the YouTube video. -
summary_length
(string, optional): Desired summary length ('short', 'medium', 'long'). Defaults to 'medium'.
-
- Output: Text containing the video summary.
3. extract_key_moments
Extracts key moments (timestamps and descriptions) from a given YouTube video.
-
Input:
-
youtube_url
(string, required): The URL of the YouTube video. -
number_of_moments
(integer, optional): Number of key moments to extract. Defaults to 3.
-
- Output: Text describing the key moments with timestamps.
4. list_supported_models
Lists available Gemini models that support the generateContent
method (fetched via REST API).
- Input: None
- Output: Text listing the supported model names.
Important Notes
-
Model Selection for Production: When using this server for production or commercial purposes, please ensure the selected
GEMINI_MODEL_NAME
is a stable version suitable for production use. According to the Gemini API Terms of Service, models marked as "Experimental" or "Preview" are not permitted for production deployment. - API Terms of Service: Usage of this server relies on the Google Gemini API. Users are responsible for reviewing and complying with the Google APIs Terms of Service and the Gemini API Additional Terms of Service. Note that data usage policies may differ between free and paid tiers of the Gemini API. Do not submit sensitive or confidential information when using free tiers.
- Content Responsibility: The accuracy and appropriateness of content generated via the Gemini API are not guaranteed. Use discretion before relying on or publishing generated content.
License
This project is licensed under the MIT License. See the LICENSE file for details.
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
I find academic articles and books for research and literature reviews.
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Mirror ofhttps: //github.com/bitrefill/bitrefill-mcp-server
MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.
Ein KI-Chat-Bot für kleine und mittelgroße Teams, die Modelle wie Deepseek, Open AI, Claude und Gemini unterstützt. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 claude 、 Gemini 等模型。
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden
Reviews

user_04fBJfZd
Youtube-Vision-MCP is a fantastic tool for any avid YouTube user. Created by minbang930, this project enhances your browsing and viewing experience significantly. It's impressive how it seamlessly integrates various functionalities, making navigation and content consumption smoother and more enjoyable. As a loyal MCP app user, I highly recommend checking out their GitHub page to explore this incredible innovation!