I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

lalanikarim_comfy-mcp-server
Mirror ofhttps: //github.com/lalanikarim/comfy-mcp-server
3 years
Works with Finder
0
Github Watches
1
Github Forks
1
Github Stars
Comfy MCP Server
A server using FastMCP framework to generate images based on prompts via a remote Comfy server.
Overview
This script sets up a server using the FastMCP framework to generate images based on prompts using a specified workflow. It interacts with a remote Comfy server to submit prompts and retrieve generated images.
Prerequisites
- Python 3.x installed.
- Required packages:
mcp
,json
,urllib
,time
,os
. - Workflow file exported from Comfy UI. This code includes a sample
Flux-Dev-ComfyUI-Workflow.json
which is only used here as reference. You will need to export from your workflow and set the environment variables accordingly.
You can install the required packages using pip:
pip install "mcp[cli]"
Configuration
Set the following environment variables:
-
COMFY_URL
to point to your Comfy server URL. -
COMFY_WORKFLOW_JSON_FILE
to point to the absolute path of the API export json file for the comfyui workflow. -
PROMPT_NODE_ID
to the id of the text prompt node. -
OUTPUT_NODE_ID
to the id of the output node with the final image.
Example:
export COMFY_URL=http://your-comfy-server-url:port
export COMFY_WORKFLOW_JSON_FILE=/path/to/the/comfyui_workflow_export.json
export PROMPT_NODE_ID=6 # use the correct node id here
export OUTPUT_NODE_ID=9 # use the correct node id here
Usage
Run the script directly:
python comfy-mcp-server.py
The server will start and listen for requests to generate images based on the provided prompts.
Functionality
generate_image(prompt: str, ctx: Context) -> Image | str
This function generates an image using a specified prompt. It follows these steps:
- Checks if all the environment variable are set.
- Loads a prompt template from a JSON file.
- Submits the prompt to the Comfy server.
- Polls the server for the status of the prompt processing.
- Retrieves and returns the generated image once it's ready.
Dependencies
-
mcp
: For setting up the FastMCP server. -
json
: For handling JSON data. -
urllib
: For making HTTP requests. -
time
: For adding delays in polling. -
os
: For accessing environment variables.
License
This project is licensed under the MIT License - see the LICENSE file for details.
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Therapist adept at identifying core issues and offering practical advice with images.
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Ein einheitliches API-Gateway zur Integration mehrerer Ethercan-ähnlicher Blockchain-Explorer-APIs mit Modellkontextprotokoll (MCP) für AI-Assistenten.
Mirror ofhttps: //github.com/bitrefill/bitrefill-mcp-server
Reviews

user_pzbukaGV
As a dedicated user of the lalanikarim_comfy-mcp-server by MCP-Mirror, I find this server solution incredibly efficient and user-friendly. The seamless integration and the ease of setup through the provided GitHub link (https://github.com/MCP-Mirror/lalanikarim_comfy-mcp-server) have significantly enhanced my workflow. The welcoming information and straightforward start URL make deployment quick and headache-free. Overall, it's an invaluable tool for MCP applications.