MCP cover image
See in Github
2025-03-25

Miroir dehttps: //github.com/b-tep62/mcp-server-mlflow

0

Github Watches

0

Github Forks

0

Github Stars

MLflow Prompt Registry MCP Server

Model Context Protocol (MCP) Server for MLflow Prompt Registry, enabling access to prompt templates managed in MLflow.

This server implements the MCP Prompts specification for discovering and using prompt templates from MLflow Prompt Registry. The primary use case is to load prompt templates from MLflow in Claude Desktop, allowing users to instruct Claude conveniently for repetitive tasks or common workflows.

Tools

  • list-prompts
    • List available prompts
    • Inputs:
      • cursor (optional string): Cursor for pagination
      • filter (optional string): Filter for prompts
    • Returns: List of prompt objects
  • get-prompt
    • Retrieve and compile a specific prompt
    • Inputs:
      • name (string): Name of the prompt to retrieve
      • arguments (optional object): JSON object with prompt variables
    • Returns: Compiled prompt object

Setup

1: Install MLflow and Start Prompt Registry

Install and start an MLflow server if you haven't already to host the Prompt Registry:

pip install mlflow>=2.21.1
mlflow server --port 5000

2: Create a prompt template in MLflow

If you haven't already, create a prompt template in MLflow following this guide.

3: Build MCP Server

npm install
npm run build

4: Add the server to Claude Desktop

Configure Claude for Desktop by editing claude_desktop_config.json:

{
  "mcpServers": {
    "mlflow": {
      "command": "node",
      "args": ["<absolute-path-to-this-repository>/dist/index.js"],
      "env": {
        "MLFLOW_TRACKING_URI": "http://localhost:5000"
      }
    }
  }
}

Make sure to replace the MLFLOW_TRACKING_URI with your actual MLflow server address.

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • n8n-io
  • Plateforme d'automatisation de workflow à code équitable avec des capacités d'IA natives. Combinez le bâtiment visuel avec du code personnalisé, de l'auto-hôte ou du cloud, 400+ intégrations.

  • open-webui
  • Interface AI conviviale (prend en charge Olllama, Openai API, ...)

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.

    Reviews

    4 (1)
    Avatar
    user_MAKMkDvD
    2025-04-17

    I've been using B-Step62_mcp-server-mlflow from MCP-Mirror and it has significantly enhanced our MLFlow management. The setup was straightforward and the comprehensive documentation made integration seamless. This tool is invaluable for anyone serious about machine learning. Highly recommend checking it out on GitHub!