I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

MCP-Code-Checker
MCP Server fournissant des vérifications de la qualité du code (Pylint et Pytest) avec des invites intelligentes pour l'analyse et les correctifs. Permet à Claude et à d'autres assistants d'IA d'analyser votre code et de suggérer des améliorations.
3 years
Works with Finder
2
Github Watches
1
Github Forks
3
Github Stars
MCP Code Checker
A Model Context Protocol (MCP) server providing code quality checking operations. This server offers a API for performing code quality checks within a specified project directory, following the MCP protocol design.
Overview
This MCP server enables AI assistants like Claude (via Claude Desktop) or other MCP-compatible systems to perform quality checks on your code. With these capabilities, AI assistants can:
- Run pylint checks to identify code quality issues
- Execute pytest to identify failing tests
- Generate smart prompts for LLMs to explain issues and suggest fixes
- Combine multiple checks for comprehensive code quality analysis
All operations are securely contained within your specified project directory, giving you control while enabling powerful AI collaboration for code quality improvement.
By connecting your AI assistant to your code checking tools, you can transform your debugging workflow - describe what you need in natural language and let the AI identify and fix issues directly in your project files.
Features
-
run_pylint_check
: Run pylint on the project code and generate smart prompts for LLMs -
run_pytest_check
: Run pytest on the project code and generate smart prompts for LLMs -
run_all_checks
: Run all code checks (pylint and pytest) and generate combined results
Pylint Parameters
The pylint tools expose the following parameters for customization:
Parameter | Type | Default | Description |
---|---|---|---|
disable_codes |
list | None | List of pylint error codes to disable during analysis |
Additionally, run_all_checks
exposes:
Parameter | Type | Default | Description |
---|---|---|---|
pylint_categories |
set | ERROR, FATAL | Set of pylint message categories to include (convention, refactor, warning, error, fatal) |
Pytest Parameters
Both run_pytest_check
and run_all_checks
expose the following parameters for customization:
Parameter | Type | Default | Description |
---|---|---|---|
test_folder |
string | "tests" | Path to the test folder relative to project directory |
markers |
list | None | Optional list of pytest markers to filter tests |
verbosity |
integer | 2 | Pytest verbosity level (0-3) |
extra_args |
list | None | Optional list of additional pytest arguments |
env_vars |
dictionary | None | Optional environment variables for the subprocess |
keep_temp_files |
boolean | False | Whether to keep temporary files after execution |
continue_on_collection_errors |
boolean | True | Whether to continue on collection errors |
python_executable |
string | None | Path to Python interpreter to use for running tests |
venv_path |
string | None | Path to virtual environment to activate for running tests |
Installation
# Clone the repository
git clone https://github.com/MarcusJellinghaus/mcp-code-checker.git
cd mcp-code-checker
# Create and activate a virtual environment (optional but recommended)
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install dependencies
pip install -e .
Running the Server
python -m src.main --project-dir /path/to/project [--python-executable /path/to/python] [--venv-path /path/to/venv]
The server uses FastMCP for operation. The project directory parameter (--project-dir
) is required for security reasons. All code checking operations will be restricted to this directory.
Additional parameters:
-
--python-executable
: Optional path to Python interpreter to use for running tests -
--venv-path
: Optional path to virtual environment to activate for running tests
Using with Claude Desktop App
To enable Claude to use this code checking server for analyzing files in your local environment:
-
Create or modify the Claude configuration file:
- Location:
%APPDATA%\Claude\claude_desktop_config.json
(on Windows) - On macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Location:
-
Add the MCP server configuration to the file:
{
"mcpServers": {
"code_checker": {
"command": "C:\\path\\to\\mcp_code_checker\\.venv\\Scripts\\python.exe",
"args": [
"C:\\path\\to\\mcp_code_checker\\src\\main.py",
"--project-dir",
"C:\\path\\to\\your\\project",
"--python-executable",
"C:\\path\\to\\python.exe",
"--venv-path",
"C:\\path\\to\\venv"
],
"env": {
"PYTHONPATH": "C:\\path\\to\\mcp_code_checker\\"
}
}
}
}
-
Replace all
C:\\path\\to\\
instances with your actual paths:- Point to your Python virtual environment
- Set the project directory to the folder you want Claude to check
- Make sure the PYTHONPATH points to the mcp_code_checker root folder
-
Restart the Claude desktop app to apply changes
Claude will now be able to analyze code in your specified project directory.
- Log files location:
- Windows:
%APPDATA%\Claude\logs
- These logs can be helpful for troubleshooting issues with the MCP server connection
- Windows:
For more information on logging and troubleshooting, see the MCP Documentation.
Using MCP Inspector
MCP Inspector allows you to debug and test your MCP server:
- Start MCP Inspector by running:
npx @modelcontextprotocol/inspector \
uv \
--directory C:\path\to\mcp_code_checker \
run \
src\main.py
-
In the MCP Inspector web UI, configure with the following:
- Python interpreter:
C:\path\to\mcp_code_checker\.venv\Scripts\python.exe
- Arguments:
C:\path\to\mcp_code_checker\src\main.py --project-dir C:\path\to\your\project
- Environment variables:
- Name:
PYTHONPATH
- Value:
C:\path\to\mcp_code_checker\
- Name:
- Python interpreter:
-
This will launch the server and provide a debug interface for testing the available tools.
Available Tools
The server exposes the following MCP tools:
Run Pylint Check
- Runs pylint on the project code and generates smart prompts for LLMs
- Returns: A string containing either pylint results or a prompt for an LLM to interpret
- Helps identify code quality issues, style problems, and potential bugs
- Customizable with parameters for disabling specific pylint codes
Run Pytest Check
- Runs pytest on the project code and generates smart prompts for LLMs
- Returns: A string containing either pytest results or a prompt for an LLM to interpret
- Identifies failing tests and provides detailed information about test failures
- Customizable with parameters for test selection, environment, and verbosity
Run All Checks
- Runs all code checks (pylint and pytest) and generates combined results
- Returns: A string containing results from all checks and/or LLM prompts
- Provides a comprehensive analysis of code quality in a single operation
- Supports customization parameters for both pylint and pytest
Security Features
- All checks are performed within the specified project directory
- Code execution is limited to the Python test files within the project
- Results are formatted for easy interpretation by both humans and LLMs
Development
Setting up the development environment on windows
REM Clone the repository
git clone https://github.com/yourusername/mcp-code-checker.git
cd mcp-code-checker
REM Create and activate a virtual environment
python -m venv .venv
.venv\Scripts\activate
REM Install dependencies
pip install -e .
REM Install development dependencies
pip install -e ".[dev]"
Running with MCP Dev Tools
# Set the PYTHONPATH and run the server module using mcp dev
set PYTHONPATH=. && mcp dev src/server.py
License
This project is licensed under the MIT License - see the LICENSE file for details.
The MIT License is a permissive license that allows reuse with minimal restrictions. It permits use, copying, modification, and distribution with proper attribution.
Links
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Advanced software engineer GPT that excels through nailing the basics.
Therapist adept at identifying core issues and offering practical advice with images.
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.
Miroir dehttps: //github.com/bitrefill/bitrefill-mcp-server
Reviews

user_O9UI0Fdr
MySQL MCP Server by shreyansh-ghl is a fantastic server solution for anyone looking to optimize their database management. It provides a seamless user experience with impressive performance and reliability. Highly recommend it for both beginners and seasoned developers alike. Check it out and you won't be disappointed!