MCP cover image
See in Github
2025-04-09

MCP -Server für Datenbanken

1

Github Watches

7

Github Forks

16

Github Stars

Databricks MCP Server

A Model Context Protocol (MCP) server that connects to Databricks API, allowing LLMs to run SQL queries, list jobs, and get job status.

Features

  • Run SQL queries on Databricks SQL warehouses
  • List all Databricks jobs
  • Get status of specific Databricks jobs
  • Get detailed information about Databricks jobs

Prerequisites

  • Python 3.7+
  • Databricks workspace with:
    • Personal access token
    • SQL warehouse endpoint
    • Permissions to run queries and access jobs

Setup

  1. Clone this repository
  2. Create and activate a virtual environment (recommended):
    python -m venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
  3. Install dependencies:
    pip install -r requirements.txt
    
  4. Create a .env file in the root directory with the following variables:
    DATABRICKS_HOST=your-databricks-instance.cloud.databricks.com
    DATABRICKS_TOKEN=your-personal-access-token
    DATABRICKS_HTTP_PATH=/sql/1.0/warehouses/your-warehouse-id
    
  5. Test your connection (optional but recommended):
    python test_connection.py
    

Obtaining Databricks Credentials

  1. Host: Your Databricks instance URL (e.g., your-instance.cloud.databricks.com)
  2. Token: Create a personal access token in Databricks:
    • Go to User Settings (click your username in the top right)
    • Select "Developer" tab
    • Click "Manage" under "Access tokens"
    • Generate a new token, and save it immediately
  3. HTTP Path: For your SQL warehouse:
    • Go to SQL Warehouses in Databricks
    • Select your warehouse
    • Find the connection details and copy the HTTP Path

Running the Server

Start the MCP server:

python main.py

You can test the MCP server using the inspector by running

npx @modelcontextprotocol/inspector python3 main.py

Available MCP Tools

The following MCP tools are available:

  1. run_sql_query(sql: str) - Execute SQL queries on your Databricks SQL warehouse
  2. list_jobs() - List all Databricks jobs in your workspace
  3. get_job_status(job_id: int) - Get the status of a specific Databricks job by ID
  4. get_job_details(job_id: int) - Get detailed information about a specific Databricks job

Example Usage with LLMs

When used with LLMs that support the MCP protocol, this server enables natural language interaction with your Databricks environment:

  • "Show me all tables in the database"
  • "Run a query to count records in the customer table"
  • "List all my Databricks jobs"
  • "Check the status of job #123"
  • "Show me details about job #456"

Troubleshooting

Connection Issues

  • Ensure your Databricks host is correct and doesn't include https:// prefix
  • Check that your SQL warehouse is running and accessible
  • Verify your personal access token has the necessary permissions
  • Run the included test script: python test_connection.py

Security Considerations

  • Your Databricks personal access token provides direct access to your workspace
  • Secure your .env file and never commit it to version control
  • Consider using Databricks token with appropriate permission scopes only
  • Run this server in a secure environment

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • Mintplex-Labs
  • Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.

  • ravitemer
  • Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)

  • jae-jae
  • MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.

  • patruff
  • Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden

  • pontusab
  • Die Cursor & Windsurf -Community finden Regeln und MCPs

  • n8n-io
  • Fair-Code-Workflow-Automatisierungsplattform mit nativen KI-Funktionen. Kombinieren Sie visuelles Gebäude mit benutzerdefiniertem Code, SelbstHost oder Cloud, 400+ Integrationen.

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.

  • open-webui
  • Benutzerfreundliche KI-Schnittstelle (unterstützt Ollama, OpenAI-API, ...)

    Reviews

    5 (1)
    Avatar
    user_Sjzt2PcS
    2025-04-18

    I've been using mcp-databricks-server by JordiNeil and it has significantly streamlined my data processing tasks. The integration with Databricks is seamless and it has proven to be extremely reliable. Highly recommend this for anyone dealing with large scale data operations. Check it out on GitHub!