Cover image
Try Now
2025-04-07

Ein Hochleistungsbild-Komprimierungsmikroservice basierend auf MCP (Modal Context Protocol)

3 years

Works with Finder

0

Github Watches

1

Github Forks

7

Github Stars

mcp-image-compression

Project Overview

mcp-image-compression is a high-performance image compression microservice based on MCP (Modal Context Protocol) architecture. This service focuses on providing fast and high-quality image compression capabilities to help developers optimize image resources for websites and applications, improving loading speed and user experience.

Features

  • Multi-format support: Compress mainstream image formats including JPEG, PNG, WebP, AVIF
  • Offline Usage: No need to connect to the internet to use
  • Smart compression: Automatically select optimal compression parameters based on image content
  • Batch processing: Support parallel compression of multiple images for improved efficiency
  • Quality control: Customizable compression quality to balance file size and visual quality

TOOLS

  1. image_compression
    • Image compression
    • Inputs:
      • urls (strings): URLs of images to compress
      • quality (int): Quality of compression (0-100)
      • format (string): Format of compressed image (e.g. "jpeg", "png", "webp", "avif")
    • Returns: Compressed images url

Setup

NPX

{
  "mcpServers": {
    "Image compression": {
      "command": "npx",
      "args": [
        "-y",
        "@inhiblab-core/mcp-image-compression"
      ],
      "env": {
        "IMAGE_COMPRESSION_DOWNLOAD_DIR": "<YOUR_DIR>"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Build

docker build -t mcp-image-compression .

License

This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • Daren White
  • A supportive coach for mastering all Spanish tenses.

  • J. DE HARO OLLE
  • Especialista en juegos de palabras en varios idiomas.

  • albert tan
  • Japanese education, creating tailored learning experiences.

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • jae-jae
  • MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.

  • HiveNexus
  • Ein KI-Chat-Bot für kleine und mittelgroße Teams, die Modelle wie Deepseek, Open AI, Claude und Gemini unterstützt. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 claude 、 Gemini 等模型。

  • ravitemer
  • Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)

  • patruff
  • Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden

    Reviews

    1 (1)
    Avatar
    user_R56rEQ2c
    2025-04-17

    I've been using mcp-image-compression by InhiblabCore for a while now, and I'm genuinely impressed! This tool significantly reduces image sizes without compromising on quality, making web development and storage management a breeze. Highly recommend checking it out on GitHub: https://github.com/InhiblabCore/mcp-image-compression. Great job, InhiblabCore!