MCP cover image
Langchaingo-MCP-Audapter logo
Public

Langchaingo-MCP-Audapter

See in Github
2025-04-08

一个GO适配器,它将Langchain GO工具与模型上下文协议(MCP)服务器桥梁。

1

Github Watches

0

Github Forks

5

Github Stars

LangChainGo MCP Adapter

A Go adapter that bridges LangChain Go tools with Model Context Protocol (MCP) servers.

Overview

This adapter allows you to use tools defined on an MCP server with the LangChain Go library. It implements the necessary interfaces to integrate MCP tools seamlessly with LangChain Go's agent infrastructure.

Features

  • Connect to any MCP server
  • Automatically discover MCP tools from a specified MCP server and make them available to LangChain Go
  • Wrap MCP tools as LangChain Go tools

Installation

go get github.com/i2y/langchaingo-mcp-adapter

Usage

package main

import (
    "context"
    "log"
    "os"

    "github.com/i2y/langchaingo-mcp-adapter"
    "github.com/mark3labs/mcp-go/client"
    "github.com/tmc/langchaingo/agents"
    "github.com/tmc/langchaingo/chains"
    "github.com/tmc/langchaingo/llms/googleai"
    "github.com/tmc/langchaingo/tools"
)

func main() {
    // Create an MCP client using stdio
    mcpClient, err := client.NewStdioMCPClient(
        "./an-mcp-server",  // Path to an MCP server
        nil,                // Additional environment variables if needed
    )
    if err != nil {
        log.Fatalf("Failed to create MCP client: %v", err)
    }
    defer mcpClient.Close()

    // Create the adapter
    adapter, err := langchaingo_mcp_adapter.New(mcpClient)
    if err != nil {
        log.Fatalf("Failed to create adapter: %v", err)
    }

    // Get all tools from MCP server
    mcpTools, err := adapter.Tools()
    if err != nil {
        log.Fatalf("Failed to get tools: %v", err)
    }

    ctx := context.Backgorund()

    // Create a Google AI LLM client
    llm, err := googleai.New(
        ctx,
        googleai.WithDefaultModel("gemini-2.0-flash"),
        googleai.WithAPIKey(os.Getenv("GOOGLE_API_KEY")),
    )
    if err != nil {
        log.Fatalf("Create Google AI client: %v", err)
    }

    // Create a agent with the tools
    agent := agents.NewOneShotAgent(
        llm,
        mcpTools,
        agents.WithMaxIterations(3),
    )
    executor := agents.NewExecutor(agent)

    // Use the agent
    question := "Can you help me analyze this data using the available tools?"
    result, err := chains.Run(
        ctx,
        executor,
        question,
    )
    if err != nil {
        log.Fatalf("Agent execution error: %v", err)
    }

    log.Printf("Agent result: %s", result)
}

Example Applications

See the example directory for a complete example:

  • example/agent: Demonstrates how to use the adapter with an LLM agent
  • example/server: A minimal MCP server example

The mcp-curl server in this sample is based on the code from this blog.

Requirements

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

相关推荐

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • Lists Tailwind CSS classes in monospaced font

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • modelcontextprotocol
  • 模型上下文协议服务器

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • ravitemer
  • 一个功能强大的Neovim插件,用于管理MCP(模型上下文协议)服务器

  • jae-jae
  • MCP服务器使用剧作《无头浏览器》获取网页内容。

  • patruff
  • Ollama和MCP服务器之间的桥梁,使本地LLMS可以使用模型上下文协议工具

  • pontusab
  • 光标与风浪冲浪社区,查找规则和MCP

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

    Reviews

    2 (1)
    Avatar
    user_iUZSKqjv
    2025-04-18

    As a devoted user of MCP applications, I can't recommend the langchaingo-mcp-adapter by i2y enough! This incredible tool seamlessly integrates with MCP, enhancing its functionality and user experience. The project's repository on GitHub is well-maintained and offers extensive support for developers. A must-have for anyone working with MCP! Check it out at https://github.com/i2y/langchaingo-mcp-adapter.