I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

pavimento
Servidor MCP para búsqueda y gestión de documentos basados en trapo
1
Github Watches
1
Github Forks
6
Github Stars
RagDocs MCP Server
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Features
- Add documentation with metadata
- Semantic search through documents
- List and organize documentation
- Delete documents
- Support for both Ollama (free) and OpenAI (paid) embeddings
- Automatic text chunking and embedding generation
- Vector storage with Qdrant
Prerequisites
- Node.js 16 or higher
- One of the following Qdrant setups:
- Local instance using Docker (free)
- Qdrant Cloud account with API key (managed service)
- One of the following for embeddings:
- Ollama running locally (default, free)
- OpenAI API key (optional, paid)
Available Tools
1. add_document
Add a document to the RAG system.
Parameters:
-
url
(required): Document URL/identifier -
content
(required): Document content -
metadata
(optional): Document metadata-
title
: Document title -
contentType
: Content type (e.g., "text/markdown")
-
2. search_documents
Search through stored documents using semantic similarity.
Parameters:
-
query
(required): Natural language search query -
options
(optional):-
limit
: Maximum number of results (1-20, default: 5) -
scoreThreshold
: Minimum similarity score (0-1, default: 0.7) -
filters
:-
domain
: Filter by domain -
hasCode
: Filter for documents containing code -
after
: Filter for documents after date (ISO format) -
before
: Filter for documents before date (ISO format)
-
-
3. list_documents
List all stored documents with pagination and grouping options.
Parameters (all optional):
-
page
: Page number (default: 1) -
pageSize
: Number of documents per page (1-100, default: 20) -
groupByDomain
: Group documents by domain (default: false) -
sortBy
: Sort field ("timestamp", "title", or "domain") -
sortOrder
: Sort order ("asc" or "desc")
4. delete_document
Delete a document from the RAG system.
Parameters:
-
url
(required): URL of the document to delete
Installation
npm install -g @mcpservers/ragdocs
MCP Server Configuration
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using Qdrant Cloud:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "https://your-cluster-url.qdrant.tech",
"QDRANT_API_KEY": "your-qdrant-api-key",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using OpenAI:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "openai",
"OPENAI_API_KEY": "your-api-key"
}
}
}
}
Local Qdrant with Docker
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
Environment Variables
-
QDRANT_URL
: URL of your Qdrant instance- For local: "http://127.0.0.1:6333" (default)
- For cloud: "https://your-cluster-url.qdrant.tech"
-
QDRANT_API_KEY
: API key for Qdrant Cloud (required when using cloud instance) -
EMBEDDING_PROVIDER
: Choice of embedding provider ("ollama" or "openai", default: "ollama") -
OPENAI_API_KEY
: OpenAI API key (required if using OpenAI) -
EMBEDDING_MODEL
: Model to use for embeddings- For Ollama: defaults to "nomic-embed-text"
- For OpenAI: defaults to "text-embedding-3-small"
License
Apache License 2.0
相关推荐
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
This GPT assists in finding a top-rated business CPA - local or virtual. We account for their qualifications, experience, testimonials and reviews. Business operators provide a short description of your business, services wanted, and city or state.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
Espejo dehttps: //github.com/agentience/practices_mcp_server
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Reviews

user_883HJyMq
I've been using the Unity MCP Package by HuangChILun for a few months now, and I'm thoroughly impressed. The integration is seamless, and it has significantly streamlined my development process. The documentation is clear and the support has been top-notch. Highly recommend this package to anyone looking to enhance their Unity projects!