MCP cover image
See in Github
2025-04-02

MCP -Server zum Training Linearer Regressionsmodell.

1

Github Watches

3

Github Forks

8

Github Stars

Linear Regression MCP

Welcome to Linear Regression MCP! This project demonstrates an end-to-end machine learning workflow using Claude and the Model Context Protocol (MCP).

Claude can train a Linear Regression model entirely by itself, simply by uploading a CSV file containing the dataset. The system goes through the entire ML model training lifecycle, handling data preprocessing, training, and evaluation (RMSE calculation).


Setup and Installation

1. Clone the Repository:

First, clone the repository to your local machine:

git clone https://github.com/HeetVekariya/Linear-Regression-MCP
cd Linear-Regression-MCP

2. Install uv:

uv is an extremely fast Python package and project manager, written in Rust. It is essential for managing the server and dependencies in this project.

  • Download and install uv from here.

3. Install Dependencies:

Once uv is installed, run the following command to install all necessary dependencies:

uv sync

4. Configure Claude Desktop:

To integrate the server with Claude Desktop, you will need to modify the Claude configuration file. Follow the instructions for your operating system:

  • For macOS or Linux:
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
  • For Windows:
code $env:AppData\Claude\claude_desktop_config.json
  • In the configuration file, locate the mcpServers section, and replace the placeholder paths with the absolute paths to your uv installation and the Linear Regression project directory. It should look like this:
{
    "mcpServers":
    {
        "linear-regression": 
        {
            "command": "ABSOLUTE/PATH/TO/.local/bin/uv",
            "args":
            [
                "--directory",
                "ABSOLUTE/PATH/TO/YOUR-LINEAR-REGRESSION-REPO", 
                "run",
                "server.py"
            ] 
        }
    }
}
  • Once the file is saved, restart Claude Desktop to link with the MCP server.

Available Tools

The following tools are available in this project to help you work with the dataset and train the model:

Tool Description Arguments
upload_file(path) Uploads a CSV file and stores it for processing. path: Absolute path to the CSV file.
get_columns_info() Retrieves the column names in the uploaded dataset. No arguments.
check_category_columns() Checks for any categorical columns in the dataset. No arguments.
label_encode_categorical_columns() Label encodes categorical columns into numerical values. No arguments.
train_linear_regression_model(output_column) Trains a linear regression model and calculates RMSE. output_column: The name of the target column.

Open for Contributions

I welcome contributions to this project! Whether it's fixing bugs, adding new features, or improving the documentation, feel free to fork the repository and submit pull requests.

If you have any suggestions or feature requests, open an issue, and I'll be happy to discuss them!

👀

Github Twitter LinkedIn Medium Dev.to Dev.to

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • modelcontextprotocol
  • Modellkontext -Protokollserver

  • Mintplex-Labs
  • Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.

  • ravitemer
  • Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)

    Reviews

    1 (1)
    Avatar
    user_FNg5yZde
    2025-04-16

    I've been using the Linear-Regression-MCP by HeetVekariya, and it's fantastic! The GitHub repository (https://github.com/HeetVekariya/Linear-Regression-MCP) is well-organized and the implementation in Python is clear and efficient. This tool has greatly simplified my regression analysis tasks and the documentation is superb, making it easy to get started quickly. Highly recommend it for anyone needing a reliable linear regression solution!