Cover image
MCP-Server-Google-Search-Console
Public

MCP-Server-Google-Search-Console

Try Now
2025-04-08

3 years

Works with Finder

1

Github Watches

0

Github Forks

0

Github Stars

Google Search Console MCP Server

A tool for accessing Google Search Console using the Model Context Protocol (MCP) server.

Features

  • Retrieve search analytics data (with dimension support)
  • Detailed data analysis with customizable reporting periods

Prerequisites

  • Python 3.10 or higher
  • Google Cloud project with Search Console API enabled
  • Service account credentials with access to Search Console

Installation

pip install mcp-server-google-search-console

Or install from source:

git clone https://github.com/yourusername/mcp-server-google-search-console.git
cd mcp-server-google-search-console
pip install -e .

Setting Up Development Environment (uv)

This project uses uv for faster package management and installation.

Installing uv and uvx

First, install uv and uvx:

pip install uv uvx

Creating and Managing Virtual Environments

To create a new virtual environment using uv:

uv venv
source .venv/bin/activate  # Linux/macOS
.venv\Scripts\activate     # Windows

Installing Dependencies

After cloning the repository, install dependencies:

git clone https://github.com/yourusername/mcp-server-google-search-console.git
cd mcp-server-google-search-console
pip install -e .

To install the MCP package separately:

pip install "mcp[cli]"

Installing Development Dependencies

To install additional tools needed for development, run:

pip install -e ".[dev]"

Authentication Setup

To obtain Google Search Console API credentials:

  1. Access the Google Cloud Console
  2. Create a new project or select an existing one
  3. Enable the API:
    • Go to "APIs & Services" > "Library"
    • Search for and enable "Search Console API"
  4. Create credentials:
    • Go to "APIs & Services" > "Credentials"
    • Click "Create Credentials" > "Service Account"
    • Enter service account details
    • Create a new key in JSON format
    • The credentials file (.json) will be automatically downloaded
  5. Grant access:

Usage

Set an environment variable to specify the path to your Google Search Console credentials file:

export GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json

Starting the MCP Server

Standard Method

mcp-server-gsc

Using uvx

With uvx, you can automate virtual environment and package installation:

# Run directly without installation
uvx run mcp-server-gsc

# Run with a specific Python version
uvx --python=3.11 run mcp-server-gsc

# Run with specified environment variables
uvx run -e GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json mcp-server-gsc

Configuration for Claude Desktop Application

Standard Configuration

{
  "mcpServers": {
    "gsc": {
      "command": "mcp-server-gsc",
      "env": {
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/credentials.json"
      }
    }
  }
}

Configuration Using uvx

{
  "mcpServers": {
    "gsc": {
      "command": "uvx",
      "args": ["run", "mcp-server-gsc"],
      "env": {
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/credentials.json"
      }
    }
  }
}

Available Tools

search_analytics

Retrieve search performance data from Google Search Console:

Required Parameters:

  • siteUrl: Site URL (format: http://www.example.com/ or sc-domain:example.com)
  • startDate: Start date (YYYY-MM-DD)
  • endDate: End date (YYYY-MM-DD)

Optional Parameters:

  • dimensions: Comma-separated list (query,page,country,device,searchAppearance)
  • type: Search type (web, image, video, news)
  • aggregationType: Aggregation method (auto, byNewsShowcasePanel, byProperty, byPage)
  • rowLimit: Maximum number of rows to return (default: 1000)

Example usage:

{
  "siteUrl": "https://example.com",
  "startDate": "2024-01-01",
  "endDate": "2024-01-31",
  "dimensions": "query,country",
  "type": "web",
  "rowLimit": 500
}

Release Procedure

This project is automatically published to PyPI when a GitHub release tag is created.

To release a new version:

  1. Run the version update script:

    python scripts/bump_version.py [major|minor|patch]
    
  2. Follow the displayed instructions to push to GitHub:

    git add pyproject.toml
    git commit -m "Bump version to x.y.z"
    git tag vx.y.z
    git push origin main vx.y.z
    
  3. Create a release on the GitHub repository page:

    • Select tag: vx.y.z
    • Enter title: vx.y.z
    • Fill in release notes
    • Click "Publish"
  4. GitHub Actions will be triggered and automatically publish the package to PyPI.

License

MIT

Contributions

Contributions are welcome! Please read the contribution guidelines before submitting a pull request.

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • tomoyoshi hirata
  • Sony α7IIIマニュアルアシスタント

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • jae-jae
  • MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.

  • ravitemer
  • Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)

  • patruff
  • Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden

  • pontusab
  • Die Cursor & Windsurf -Community finden Regeln und MCPs

  • av
  • Führen Sie mühelos LLM -Backends, APIs, Frontends und Dienste mit einem Befehl aus.

  • appcypher
  • Awesome MCP -Server - eine kuratierte Liste von Modellkontext -Protokollservern für Modellkontext

  • Mintplex-Labs
  • Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.

  • chongdashu
  • Aktivieren Sie KI -Assistenten -Clients wie Cursor, Windsurf und Claude -Desktop, um Unreal Engine durch natürliche Sprache mit dem Modellkontextprotokoll (MCP) zu steuern.

    Reviews

    3 (1)
    Avatar
    user_tElfoAqk
    2025-04-17

    As a dedicated user of the mcp ecosystem, the mcp-server-google-search-console by guchey has been a fantastic addition to my toolkit. It seamlessly integrates with Google Search Console, providing robust and reliable server-side support. With clear documentation and active maintenance, it has significantly simplified managing search console tasks. Highly recommend!