Cover image
Try Now
2025-02-25

Plantilla de solución de Langgraph para MCP

3 years

Works with Finder

5

Github Watches

82

Github Forks

382

Github Stars

Universal Assistant built with LangGraph and Model Context Protocol (MCP)

langgraph-mcp-openapi-usecases mp4

Model Context Protocol (MCP) is an open protocol that enables seamless integration between LLM applications and external data sources and tools. Whether you're building an AI-powered IDE, enhancing a chat interface, or creating custom AI workflows, MCP provides a standardized way to connect LLMs with the context they need. Think of MCP like a USB-C port for AI applications. Just as USB-C provides a standardized way to connect your devices to various peripherals and accessories, MCP provides a standardized way to connect AI models to different data sources and tools.

LangGraph is a framework designed to enable seamless integration of language models into complex workflows and applications. It emphasizes modularity and flexibility. Workflows are represented as graphs. Nodes correspond to actions, tools, or model queries. Edges define the flow of information between them. LangGraph provides a structured yet dynamic way to execute tasks, making it ideal for writing AI applications involving natural language understanding, automation, and decision-making.

In this earlier article we enhanced LangGraph's retrieval agent template to develop and deploy an AI solution.

In this project, we combine LangGraph with MCP to build our own Universal Assistant. For our universal assistant we implement a multi-agent pattern as follows:

Basic assistant flow

Assistant receives the user message and decides the agent to use. The agent node decides the right tool to use, and calls the tool on the MCP server. Since all our agents are based on MCP, a single MCP-Agent node is sufficient for LLM based orchestraion, and another single node is sufficient to work with MCP servers to invoke their tools.

Development Setup

  1. Create and activate a virtual environment

    git clone https://github.com/esxr/langgraph-mcp.git
    cd langgraph-mcp
    python3 -m venv .venv
    source .venv/bin/activate
    
  2. Install Langgraph CLI

    pip install -U "langgraph-cli[inmem]"
    

    Note: "inmem" extra(s) are needed to run LangGraph API server in development mode (without requiring Docker installation)

  3. Install the dependencies

    pip install -e .
    
  4. Configure environment variables

    cp env.example .env
    

    Add your OPENAI_API_KEY, GITHUB_PERSONAL_ACCESS_TOKEN etc. to the .env

    Note: We have added support for Milvus Lite Retriever (support file based URI). Milvus Lite won't work on Windows. For Windows you may need to use Milvus Server (Easy to start using Docker), and change the MILVUS_DB config to the server based URI. You may also enhance the retriever.py to add retrievers for your choice of vector databases!

Implementation Details

There are 3 main parts to our implementation:

  1. Building the Router
  2. The Assistant
  3. A generic MCP wrapper

Building the Router

Our graph to build the router is implemented in build_router_graph.py. It collects routing information based on tools, prompts, and resources offered by each MCP server using our mcp_wrapper.py. It indexes this routing information for each server in a vector database.

Build Router Sequence Diagram

The Assistant

The assistant graph is implemented in assistant_graph.py. The following animation describes the role of various nodes and the flow of control thru it, with the help of an example

Assistant workflow explained with example

A Generic MCP Wrapper

mcp_wrapper.py employs a Strategy Pattern using an abstract base class (MCPSessionFunction) to define a common interface for executing various operations on MCP servers. The pattern includes:

  1. Abstract Interface:
    • MCPSessionFunction defines an async __call__ method as a contract for all session functions.
  2. Concrete Implementations:
    • RoutingDescription class implements fetching routing information based on tools, prompts, and resources.
    • GetTools class implements fetching tools for the MCP server and transforming them to the format consumable by LangGraph.
    • RunTool class implements invoking a tool on MCP server and returning its output.
  3. Processor Function:
    • apply serves as a unified executor. It:
    • Initializes a session using stdio_client from mcp library.
    • Delegates the actual operation to the provided MCPSessionFunction instance via await fn(server_name, session).
  4. Extensibility:
    • New operations can be added by subclassing MCPSessionFunction without modifying the cor e processor logic. for e.g. we should be able to add support for getting tools and executing tools using this pattern.

A Demonstration!

Here's an end to end video!

https://github.com/user-attachments/assets/cf5b9932-33a0-4627-98ca-022979bfb2e7

相关推荐

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • Beria Joey
  • 你的职业规划师,不走弯路就问我。Sponsor:小红书“ ItsJoe就出行 ”

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

  • av
  • Ejecute sin esfuerzo LLM Backends, API, frontends y servicios con un solo comando.

  • 1Panel-dev
  • 🔥 1Panel proporciona una interfaz web intuitiva y un servidor MCP para administrar sitios web, archivos, contenedores, bases de datos y LLM en un servidor de Linux.

  • GeyserMC
  • Una biblioteca para la comunicación con un cliente/servidor de Minecraft.

  • awslabs
  • Servidores AWS MCP: servidores MCP especializados que traen las mejores prácticas de AWS directamente a su flujo de trabajo de desarrollo

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.

  • GLips
  • Servidor MCP para proporcionar información de diseño de figma a agentes de codificación de IA como Cursor

  • Byaidu
  • Traducción de papel científico en PDF con formatos preservados - 基于 Ai 完整保留排版的 PDF 文档全文双语翻译 , 支持 支持 支持 支持 支持 支持 支持 支持 支持 支持 支持 支持 等服务 等服务 等服务 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 cli/mcp/docker/zotero

  • n8n-io
  • Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.

  • activepieces
  • AI AGENTES & MCPS & AI AUTOMACIÓN DE FLUILES DE TRABAJO • (280+ Servidores MCP para agentes de IA) • Automatización de IA / Agente de AI con MCPS • Flujos de trabajo de IA y agentes de IA • MCP para agentes de IA

    Reviews

    5 (1)
    Avatar
    user_NcDAoeM4
    2025-04-16

    As a loyal user of langgraph-mcp, I am genuinely impressed by its functionality and ease of use. This application by esxr is a game-changer for anyone working with multiple languages. The intuitive interface and reliable performance make it a must-have tool. Highly recommend checking it out on GitHub!