Cover image
Try Now
2025-04-07

Ein MCP -Server, mit dem Sie Ideen, Schnellvorlagen und persönliche Vorlieben speichern und abrufen können, die Sie mit Ihrem bevorzugten KI -Tool verwenden können, das das ModelContextProvider -Protokoll unterstützt.

3 years

Works with Finder

1

Github Watches

1

Github Forks

0

Github Stars

Memory MCP

A Model Context Protocol server for storing and retrieving memories using low-level Server implementation and SQLite storage.

Installation

This project uses uv for dependency management instead of pip. uv is a fast, reliable Python package installer and resolver.

Install using uv:

uv pip install memory-mcp

Or install directly from source:

uv pip install .

For development:

uv pip install -e ".[dev]"

If you don't have uv installed, you can install it following the official instructions.

Usage

Running the server

memory-mcp

This will start the MCP server that allows you to store and retrieve memories.

Available Tools

The Memory MCP provides the following tools:

  • remember: Store a new memory with a title and content
  • get_memory: Retrieve a specific memory by ID or title
  • list_memories: List all stored memories
  • update_memory: Update an existing memory
  • delete_memory: Delete a memory

Debugging with MCP Inspect

MCP provides a handy command-line tool called mcp inspect that allows you to debug and interact with your MCP server directly.

Setup

  1. First, make sure the MCP CLI tools are installed:
uv pip install mcp[cli]
  1. Start the Memory MCP server in one terminal:
memory-mcp
  1. In another terminal, connect to the running server using mcp inspect:
mcp inspect

Using MCP Inspect

Once connected, you can:

List available tools

> tools

This will display all the tools provided by the Memory MCP server.

Call a tool

To call a tool, use the call command followed by the tool name and any required arguments:

> call remember title="Meeting Notes" content="Discussed project timeline and milestones."
> call list_memories
> call get_memory memory_id=1
> call update_memory memory_id=1 title="Updated Title" content="Updated content."
> call delete_memory memory_id=1

Debug Mode

You can enable debug mode to see detailed request and response information:

> debug on

This helps you understand exactly what data is being sent to and received from the server.

Exploring Tool Schemas

To view the schema for a specific tool:

> tool remember

This shows the input schema, required parameters, and description for the tool.

Troubleshooting

If you encounter issues:

  1. Check the server logs in the terminal where your server is running for any error messages.
  2. In the MCP inspect terminal, enable debug mode with debug on to see raw requests and responses.
  3. Ensure the tool parameters match the expected schema (check with the tool command).
  4. If the server crashes, check for any uncaught exceptions in the server terminal.

Development

To contribute to the project, install the development dependencies:

uv pip install -e ".[dev]"

Managing Dependencies

This project uses uv.lock file to lock dependencies. To update dependencies:

uv pip compile pyproject.toml -o uv.lock

Running tests

python -m pytest

Code formatting

black memory_mcp tests

Linting

ruff check memory_mcp tests

Type checking

mypy memory_mcp

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • tomoyoshi hirata
  • Sony α7IIIマニュアルアシスタント

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • jae-jae
  • MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.

  • ravitemer
  • Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)

  • patruff
  • Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden

  • pontusab
  • Die Cursor & Windsurf -Community finden Regeln und MCPs

  • av
  • Führen Sie mühelos LLM -Backends, APIs, Frontends und Dienste mit einem Befehl aus.

  • Mintplex-Labs
  • Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.

  • appcypher
  • Awesome MCP -Server - eine kuratierte Liste von Modellkontext -Protokollservern für Modellkontext

    Reviews

    5 (1)
    Avatar
    user_UQaQhLgJ
    2025-04-17

    As a dedicated user of memory-mcp, I am thoroughly impressed by its performance and reliability. Created by drdee, this tool has significantly enhanced my workflow with its seamless memory management capabilities. The clear documentation on the GitHub page (https://github.com/drdee/memory-mcp) makes it easy to get started and integrate into various projects. Highly recommended for anyone looking to optimize their system's memory usage!