MCP cover image
See in Github
2025-04-04

Un système de gestion de contexte puissant et prêt pour la production pour les modèles de grands langues (LLMS). Construit avec ChromAdB et des technologies d'intégration modernes, il offre des capacités de mémoire persistantes et spécifiques au projet qui améliorent la compréhension et la qualité de la réponse de votre IA.

1

Github Watches

1

Github Forks

3

Github Stars

# MCP Memory Bank Server 🧠

A powerful, context management system for Large Language Models (LLMs). Built with ChromaDB and modern embedding technologies, it provides persistent, project-specific memory capabilities that enhance your AI's understanding and response quality.

✨ Key Features

  • 🚀 High Performance: Optimized vector storage with ChromaDB
  • 🔒 Project Isolation: Separate context spaces for different projects
  • 🔍 Smart Search: Both semantic and keyword-based search capabilities
  • 🔄 Real-time Updates: Dynamic content management with automatic chunking
  • 🎯 Precise Recall: Advanced embedding generation via @xenova/transformers
  • 🐳 Easy Deployment: Docker-ready with persistent storage

🏗️ System Architecture

graph TB
    Client[Client Application]
    MCP[MCP Protocol Layer]
    Tools[Tool Registration]
    PS[Project Service]
    ES[Embedding Service]
    SS[Search Service]
    DS[Database Service]
    ChromaDB[(ChromaDB)]
    
    Client -->|API Calls| MCP
    MCP -->|Register| Tools
    Tools -->|Project Ops| PS
    Tools -->|Search Ops| SS
    PS -->|Store/Retrieve| DS
    SS -->|Query| DS
    SS -->|Generate| ES
    DS -->|Vector Ops| ChromaDB
    
    subgraph Core Services
        PS
        ES
        SS
        DS
    end
    
    subgraph External Dependencies
        ChromaDB
    end
    
    style Client fill:#f9f,stroke:#333,stroke-width:2px
    style MCP fill:#bbf,stroke:#333,stroke-width:2px
    style ChromaDB fill:#bfb,stroke:#333,stroke-width:2px
    style Core Services fill:#fff,stroke:#333,stroke-width:2px,stroke-dasharray: 5 5

🚀 Quick Start

Prerequisites

  • Node.js (v18+ LTS recommended)
  • npm (v9+ recommended)
  • Docker Desktop (latest stable)
  • 2GB+ free RAM
  • 1GB+ free disk space

One-Command Setup

# Clone, install, and run in development mode
git clone https://github.com/your-org/mcp-memory-bank.git && cd mcp-memory-bank && npm install && docker-compose up -d && npm run dev

🔄 Project Lifecycle

stateDiagram-v2
    [*] --> ProjectCreation: memoryBank_createProject
    ProjectCreation --> Initialization: memoryBank_initializeProject
    
    state Initialization {
        [*] --> CreateStandardFiles
        CreateStandardFiles --> ProjectBrief: projectbrief.md
        CreateStandardFiles --> ActiveContext: activeContext.md
        CreateStandardFiles --> ProductContext: productContext.md
        CreateStandardFiles --> SystemPatterns: systemPatterns.md
        CreateStandardFiles --> TechContext: techContext.md
        CreateStandardFiles --> Progress: progress.md
    }
    
    Initialization --> ContentManagement
    
    state ContentManagement {
        [*] --> FileOperations
        FileOperations --> UpdateFile: memoryBank_updateFile
        FileOperations --> GetFile: memoryBank_getFile
        FileOperations --> ListFiles: memoryBank_listFiles
        FileOperations --> DeleteFile: memoryBank_deleteFile
        
        state Search {
            [*] --> SemanticSearch
            [*] --> KeywordSearch
        }
        
        FileOperations --> Search: memoryBank_search
    }
    
    ContentManagement --> ProjectDeletion: memoryBank_deleteProject
    ProjectDeletion --> [*]

📚 API Documentation

Core Tools

Project Management

  • memoryBank_createProject: Create isolated project spaces
  • memoryBank_initializeProject: Create standard Memory Bank files in a project
  • memoryBank_deleteProject: Clean up project data
  • memoryBank_listProjects: View all projects
  • memoryBank_getProjectByName: Fetch project details

Content Management

  • memoryBank_updateFile: Store/update content with auto-chunking
  • memoryBank_getFile: Retrieve full content
  • memoryBank_listFiles: View stored files
  • memoryBank_deleteFile: Remove content
  • memoryBank_search: Semantic/keyword search

🔧 Configuration

Environment Variables

CHROMADB_URL=http://localhost:8000
MCP_MEMBANK_EMBEDDING_MODEL=Xenova/all-MiniLM-L6-v2
# Optional: Controls the logging verbosity. Defaults to 'info'.
# Possible values: 'debug', 'info', 'warn', 'error'
LOG_LEVEL=info

🐛 Troubleshooting

Common Issues

  1. ChromaDB Connection Failed

    # Check if container is running
    docker ps | grep chroma
    # Restart if needed
    docker-compose restart
    
  2. Memory Issues

    • Ensure Docker has sufficient memory allocation
    • Consider reducing batch sizes in heavy operations

🤝 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📈 Performance Considerations

  • Vector operations scale with embedding dimensions
  • Batch operations for better throughput
  • Use appropriate chunk sizes (default: 512 tokens)
  • Consider index optimization for large datasets

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.


Built with ❤️ by the bsmi021

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • n8n-io
  • Plateforme d'automatisation de workflow à code équitable avec des capacités d'IA natives. Combinez le bâtiment visuel avec du code personnalisé, de l'auto-hôte ou du cloud, 400+ intégrations.

    Reviews

    4 (1)
    Avatar
    user_EXWkdIqA
    2025-04-16

    I've been using the mcp-memory-bank by bsmi021, and it's exceeded all my expectations. The interface is user-friendly and the memory management is incredibly efficient. I highly recommend this to anyone looking for a reliable memory bank solution. The GitHub repository is well-documented, making it easy to integrate and use. Great job, bsmi021!