Cover image
Try Now
2025-03-30

Integration two AI's into a modernized MCP for better performance

3 years

Works with Finder

0

Github Watches

0

Github Forks

1

Github Stars

Public | Free OpenSource

LOTUS-MCP

FOSS solution

The LOTUS-MCP protocol outlined here is an impressive approach to model coordination and processing, integrating Mistral and Gemini with a structured architecture that allows for:

  • Routing & fallback strategies between models.
  • Consensus engine to compare outputs.
  • Context-aware processing, improving coherence across interactions.
  • Tool integration, making it extensible for external APIs.
  • Rate limiting & security for production stability.

The Model Context Protocol (MCP) developed by Anthropic for Claude is a groundbreaking open standard that enables AI assistants to connect with external data sources and tools.
As a developer or business maybe you like to have your own protocol. This guide made for you.

First looking into MCP exist by claude:

+-------------+     +-------------+     +-------------+
|             |     |             |     |             |
|    User     |     |     AI      |     |   External  |
|  Interface  |<--->|   Model     |<--->|    Tools    |
|             |     |(e.g. Claude)|     |  & Data     |
|             |     |             |     |             |
+-------------+     +-------------+     +-------------+
       ^                   ^                   ^
       |                   |                   |
       |                   |                   |
       v                   v                   v
+--------------------------------------------------+
|                                                  |
|           Model Context Protocol                 |
|                   (MCP)                          |
|                                                  |
+--------------------------------------------------+
       ^                   ^                   ^
       |                   |                   |
       |                   |                   |
       v                   v                   v
+-------------+     +-------------+     +-------------+
|             |     |             |     |             |
| Development |     |  Business   |     |   Content   |
| Environment |     |    Tools    |     | Repositories|
|             |     |             |     |             |
+-------------+     +-------------+     +-------------+

Statement

Then implement a new modernized structure for MCP. So first thing first is the cost:

| Metric          | Mistral Target | Gemini Target |
|-----------------|----------------|---------------|
| Latency         | <800ms         | <1200ms       |
| Accuracy        | 95%            | 92%           |
| Cost/1k tokens  | $0.15          | $0.25         |

So to build it we need an architecture design, something like this:

┌─────────────┐     ┌─────────────┐     ┌─────────────┐
│             │     │  Decision   │     │             │
│   User      ├────►│  Router     ├────►│  Mistral    │
│  Interface  │     │ (Task Type  │     │   (Code/    │
│             │◄────┤  Analysis)  │◄────┤   Text)     │
└─────────────┘     └─────────────┘     └─────────────┘
                        ▲   │               ▲   │
                        │   └───────┐       │   └────┐
                        ▼           ▼       ▼        ▼
                    ┌─────────┐ ┌─────────┐ ┌─────────┐
                    │ Gemini  │ │Fallback │ │Error    │
                    │(Multi-  │ │Model    │ │Handling │
                    │ modal)  │ │         │ │System   │
                    └─────────┘ └─────────┘ └─────────┘

This is User Input → Mistral (code/text processing) → Gemini (multimodal enhancement) → Final Output at the final of our journey we can to build. So go to start:

Beginning our journey

Now step-by-step guide to building a unified Model Context Protocol (MCP) system for integrating Mistral and Gemini in one application:


OUR MCP Architecture Design

┌──────────────┐       ┌───────────────┐       ┌──────────────┐
│              │       │               │       │              │
│  External    │       │   Unified     │       │   External   │
│   Tools      │◄─────►│  MCP Server   │◄─────►│   Data       │
│ (APIs, DBs)  │       │ (Orchestrator)│       │  Sources     │
└──────▲───────┘       └──────┬───┬────┘       └──────▲───────┘
       │                      │   │                   │
       │                      ▼   ▼                   │
┌──────┴───────┐       ┌───────────────┐       ┌──────┴───────┐
│              │       │               │       │              │
│   Mistral    │       │  MCP Client   │       │   Gemini     │
│  Interface   │◄─────►│(Adapter Layer)│◄─────►│ Interface    │
│              │       │               │       │              │
└──────────────┘       └───────────────┘       └──────────────┘

1. Protocol Specification

Define your MCP standard with these core components:

  • Message Format (JSON Schema):
    {
      "request_id": "uuid",
      "model": "mistral|gemini|both",
      "content": {"text": "", "files": []},
      "context": {"session": {}, "tools": []},
      "routing_rules": {"fallback": "auto", "priority": 0-100}
    }
    
  • API Endpoints:
    • /mcp/process - Main processing endpoint
    • /mcp/feedback - Response refinement loop
    • /mcp/context - Session management

2. Adapter Layer Implementation

Create model-specific adapters that translate MCP protocol to each AI's API:

Mistral Adapter:

class MistralMCPAdapter:
    def process(self, mcp_request):
        # Convert MCP format to Mistral's API format
        mistral_prompt = f"CONTEXT: {mcp_request['context']}\nQUERY: {mcp_request['content']}"
        response = mistral.generate(mistral_prompt)
        return self._to_mcp_format(response)

    def _to_mcp_format(self, raw_response):
        return {
            "model": "mistral",
            "content": raw_response.text,
            "metadata": {
                "tokens_used": raw_response.usage,
                "confidence": raw_response.scores
            }
        }

Gemini Adapter:

class GeminiMCPAdapter:
    def process(self, mcp_request):
        # Handle multimodal inputs
        if mcp_request['content']['files']:
            response = gemini.generate_content(
                [mcp_request['content']['text'], *mcp_request['content']['files']]
            )
        else:
            response = gemini.generate_text(mcp_request['content']['text'])
            
        return {
            "model": "gemini",
            "content": response.text,
            "metadata": {
                "safety_ratings": response.safety_ratings,
                "citation_metadata": response.citation_metadata
            }
        }

3. Unified Processing Workflow

def unified_processing(mcp_request):
    # Route based on model selection
    if mcp_request['model'] == 'both':
        mistral_result = MistralAdapter.process(mcp_request)
        gemini_result = GeminiAdapter.process(mcp_request)
        return consensus_engine(mistral_result, gemini_result)
    
    elif mcp_request['model'] == 'mistral':
        return MistralAdapter.process(mcp_request)
    
    elif mcp_request['model'] == 'gemini':
        return GeminiAdapter.process(mcp_request)
    
    else:
        raise MCPError("Invalid model selection")

4. Context Management System

Implement shared context handling:

class MCPContextManager:
    def __init__(self):
        self.session_context = {}
        self.tool_context = {
            'database': SQLConnector(),
            'apis': [SlackAPI(), GoogleWorkspace()],
            'filesystem': S3Storage()
        }

    def update_context(self, session_id, new_context):
        # Maintain 3-level context stack
        self.session_context[session_id] = {
            'immediate': new_context,
            'historical': self._rollup_context(session_id),
            'persistent': self._load_persistent_context(session_id)
        }

5. Tool Integration Layer

Create reusable connectors following MCP standard:

class MCPToolConnector:
    def __init__(self, tool_type):
        self.tool = self._initialize_tool(tool_type)
        
    def execute(self, action, params):
        try:
            result = self.tool.execute(action, params)
            return self._format_mcp_response(result)
        except ToolError as e:
            return self._format_error(e)

    def _format_mcp_response(self, result):
        return {
            "tool_response": result.data,
            "metadata": {
                "execution_time": result.timing,
                "confidence": result.accuracy_score
            }
        }

6. Security Implementation

Authentication Flow:

1. Client Request ──► MCP Gateway ──► JWT Validation
2. Token Validation ──► Model Access Control List
3. Request Logging ──► Encrypted Audit Trail
4. Response Sanitization ──► Content Filtering

Rate Limiting Setup:

# Use token bucket algorithm for both models
mcp_rate_limiter = RateLimiter(
    limits={
        'mistral': TokenBucket(rate=100/60),  # 100 requests/minute
        'gemini': TokenBucket(rate=50/60),
        'combined': TokenBucket(rate=75/60)
    }
)

7. Deployment Strategy

Recommended Stack:

services:
  mcp_gateway:
    image: nginx-plus
    config:
      rate_limiting: enabled
      
  core_service:
    image: python:3.11
    components:
      - model_adapter_layer
      - context_manager
      - tool_connectors
      
  monitoring:
    stack: prometheus + grafana
    metrics:
      - model_performance
      - context_hit_rate
      - tool_usage

8. Testing Framework

Implement 3-level verification:

  1. Unit Tests: Individual adapters and connectors
  2. Integration Tests: Full MCP request flows
  3. Chaos Tests: Model failure simulations

Example test case:

def test_cross_model_processing():
    request = {
        "model": "both",
        "content": "Explain quantum computing in simple terms",
        "context": {"user_level": "expert"}
    }
    
    response = unified_processing(request)
    
    assert 'mistral' in response['sources']
    assert 'gemini' in response['sources']
    assert validate_consensus(response['content'])

Key Advantages of This Approach

  1. Unified Interface: Single protocol for both models
  2. Context Sharing: Maintains session state across different AI systems
  3. Tool Reusability: Common connectors work with both Mistral and Gemini
  4. Cost Optimization: Smart routing based on model capabilities
  5. Failover Support: Automatic fallback between models

Start with implementing the adapter layer first, then build out the context management system before adding tool integrations. Use gradual rollout with shadow mode (run both models but only show one output) to compare performance before full deployment.

💐 Congratulations, you own your own MCP-like framework! 🍷


Disclaimer: The codes may not ultimately produce real results, this is just a workaround. Understand the path architecture and build the foundation for this movement in the world of AI.

Licenses: MIT , Apache 2 — So feel free to use & edit & distribution.

credit: Blue Lotus

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Beniyam Berhanu
  • Therapist adept at identifying core issues and offering practical advice with images.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • apappascs
  • Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • OffchainLabs
  • Go implementation of Ethereum proof of stake

  • huahuayu
  • A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.

  • deemkeen
  • control your mbot2 with a power combo: mqtt+mcp+llm

    Reviews

    2 (1)
    Avatar
    user_14pddX97
    2025-04-15

    The MCP Strava Server by MariyaFilippova is a game-changer for fitness enthusiasts. It seamlessly connects with Strava and delivers real-time data, making it perfect for tracking my workouts and improving performance. The setup was straightforward, and the user interface is intuitive and efficient. I highly recommend it to anyone serious about their fitness tracking. Fantastic job, Mariya!