
Agentset
TypeScript SDK for Agentset, an agentic RAG-as-a-service.
Installation
using npm:
npm install agentset
using yarn:
yarn add agentset
using pnpm:
pnpm add agentset
Getting Started
import { Agentset } from "agentset";
// Initialize the client
const agentset = new Agentset({
apiKey: "your_api_key_here",
});
// Create a namespace
const namespace = await agentset.namespaces.create({
name: "My Knowledge Base",
// Optional: provide custom embedding model
embeddingConfig: {
provider: "OPENAI",
model: "text-embedding-3-small",
apiKey: "your_openai_api_key_here",
},
});
// Get a namespace by ID or slug
const ns = agentset.namespace("my-knowledge-base");
// Ingest content
await ns.ingestion.create({
payload: {
type: "TEXT",
text: "This is some content to ingest into the knowledge base.",
name: "Introduction",
},
});
// List all ingestion jobs
const { jobs, pagination } = await ns.ingestion.all();
// Get a specific ingestion job
const job = await ns.ingestion.get("job_id");
// List all documents
const { documents } = await ns.documents.all();
// Search the knowledge base
const results = await ns.search("What is Agentset?");
API Reference
Visit the full documentation for more details.
Custom Fetch Implementation
You can provide a custom fetch implementation:
import { Agentset } from "agentset";
import nodeFetch from "node-fetch";
const agentset = new Agentset({
apiKey: "your_api_key_here",
fetcher: nodeFetch,
});
Error Handling
The SDK provides typed errors that you can catch and handle:
import { Agentset, NotFoundError, UnauthorizedError } from "agentset";
try {
const namespace = await agentset.namespaces.get("non-existent-id");
} catch (error) {
if (error instanceof NotFoundError) {
console.error("Namespace not found");
} else if (error instanceof UnauthorizedError) {
console.error("Invalid API key");
} else {
console.error("Unexpected error", error);
}
}
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Mirror ofhttps: //github.com/bitrefill/bitrefill-mcp-server
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
Reviews

user_l2aZtZPr
As a dedicated user of the MCP application through Agentset, I am thoroughly impressed by its capabilities. The seamless integration and robust performance make it a standout tool. Developed by Agentset-ai, this package has significantly enhanced my workflow efficiency. Highly recommended for anyone in need of a reliable MCP solution. Check it out at the given GitHub link.