
Agentset
TypeScript SDK for Agentset, an agentic RAG-as-a-service.
Installation
using npm:
npm install agentset
using yarn:
yarn add agentset
using pnpm:
pnpm add agentset
Getting Started
import { Agentset } from "agentset";
// Initialize the client
const agentset = new Agentset({
apiKey: "your_api_key_here",
});
// Create a namespace
const namespace = await agentset.namespaces.create({
name: "My Knowledge Base",
// Optional: provide custom embedding model
embeddingConfig: {
provider: "OPENAI",
model: "text-embedding-3-small",
apiKey: "your_openai_api_key_here",
},
});
// Get a namespace by ID or slug
const ns = agentset.namespace("my-knowledge-base");
// Ingest content
await ns.ingestion.create({
payload: {
type: "TEXT",
text: "This is some content to ingest into the knowledge base.",
name: "Introduction",
},
});
// List all ingestion jobs
const { jobs, pagination } = await ns.ingestion.all();
// Get a specific ingestion job
const job = await ns.ingestion.get("job_id");
// List all documents
const { documents } = await ns.documents.all();
// Search the knowledge base
const results = await ns.search("What is Agentset?");
API Reference
Visit the full documentation for more details.
Custom Fetch Implementation
You can provide a custom fetch implementation:
import { Agentset } from "agentset";
import nodeFetch from "node-fetch";
const agentset = new Agentset({
apiKey: "your_api_key_here",
fetcher: nodeFetch,
});
Error Handling
The SDK provides typed errors that you can catch and handle:
import { Agentset, NotFoundError, UnauthorizedError } from "agentset";
try {
const namespace = await agentset.namespaces.get("non-existent-id");
} catch (error) {
if (error instanceof NotFoundError) {
console.error("Namespace not found");
} else if (error instanceof UnauthorizedError) {
console.error("Invalid API key");
} else {
console.error("Unexpected error", error);
}
}
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Take an adjectivised noun, and create images making it progressively more adjective!
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Fair-Code-Workflow-Automatisierungsplattform mit nativen KI-Funktionen. Kombinieren Sie visuelles Gebäude mit benutzerdefiniertem Code, SelbstHost oder Cloud, 400+ Integrationen.
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
Mirror ofhttps: //github.com/bitrefill/bitrefill-mcp-server
Reviews

user_l2aZtZPr
As a dedicated user of the MCP application through Agentset, I am thoroughly impressed by its capabilities. The seamless integration and robust performance make it a standout tool. Developed by Agentset-ai, this package has significantly enhanced my workflow efficiency. Highly recommended for anyone in need of a reliable MCP solution. Check it out at the given GitHub link.