MCP cover image
See in Github
2025-04-14

Raindrop MCP服务器

8

Github Watches

0

Github Forks

8

Github Stars

Raindrop.io MCP Server

This project provides a Model Context Protocol (MCP) server for interacting with the Raindrop.io bookmarking service. It allows Language Models (LLMs) and other AI agents to access and manage your Raindrop.io data through the MCP standard.

npm version

Features

  • CRUD Operations: Create, Read, Update, and Delete collections and bookmarks.
  • Advanced Search: Filter bookmarks by various criteria like tags, domain, type, creation date, etc.
  • Tag Management: List, rename, merge, and delete tags.
  • Highlight Access: Retrieve text highlights from bookmarks.
  • Collection Management: Reorder, expand/collapse, merge, and remove empty collections.
  • File Upload: Upload files directly to Raindrop.io.
  • Reminders: Set reminders for specific bookmarks.
  • Import/Export: Initiate and check the status of bookmark imports and exports.
  • Trash Management: Empty the trash.
  • MCP Compliance: Exposes Raindrop.io functionalities as MCP resources and tools.
  • Streaming Support: Provides real-time SSE (Server-Sent Events) endpoints for streaming bookmark updates.
  • Built with TypeScript: Strong typing for better maintainability.
  • Uses Axios: For making requests to the Raindrop.io API.
  • Uses Zod: For robust schema validation of API parameters and responses.
  • Uses MCP SDK: Leverages the official @modelcontextprotocol/sdk.

Prerequisites

  • Node.js (v18 or later recommended) or Bun
  • A Raindrop.io account
  • A Raindrop.io API Access Token (create one in your Raindrop.io settings)

Installation and Usage

Using NPX (Recommended)

You can run the server directly using npx without installing it:

# Set your API token as an environment variable
export RAINDROP_ACCESS_TOKEN=YOUR_RAINDROP_ACCESS_TOKEN

# Run the server
npx @adeze/raindrop-mcp

From Source

  1. Clone the repository:

    git clone https://github.com/adeze/raindrop-mcp.git
    cd raindrop-mcp
    
  2. Install dependencies:

    bun install
    
  3. Configure Environment Variables: Create a .env file in the root directory by copying the example:

    cp .env.example .env
    

    Edit the .env file and add your Raindrop.io API Access Token:

    RAINDROP_ACCESS_TOKEN=YOUR_RAINDROP_ACCESS_TOKEN
    
  4. Build and Run:

    bun run build
    bun start
    

The server uses standard input/output (stdio) for communication by default, listening for requests on stdin and sending responses to stdout.

Usage with MCP Clients

Connect your MCP client (like an LLM agent) to the running server process via stdio. The server exposes the following resource URIs:

  • collections://all - All collections
  • collections://{parentId}/children - Child collections
  • tags://all - All tags
  • tags://collection/{collectionId} - Tags filtered by collection
  • highlights://all - All highlights
  • highlights://raindrop/{raindropId} - Highlights for a specific bookmark
  • highlights://collection/{collectionId} - Highlights filtered by collection
  • bookmarks://collection/{collectionId} - Bookmarks in a collection
  • bookmarks://raindrop/{id} - Specific bookmark by ID
  • user://info - User information
  • user://stats - User statistics

It also provides numerous tools for operational tasks such as collection management, bookmark operations, tag management, highlight operations, and user operations. For a detailed list of all available tools, refer to CLAUDE.md or check src/services/mcp.service.ts for definitions of resources and tools.

MCP Configuration

To use the Raindrop MCP server with your AI assistant or MCP-compatible client, you can add the following configuration to your .mcp.json file:

"raindrop": {
  "command": "npx",
  "args": [
    "@adeze/raindrop-mcp"
  ],
  "env": {
    "RAINDROP_ACCESS_TOKEN": "YOUR_RAINDROP_API_TOKEN"
  }
}

For Claude Code or other MCP-compatible clients, this will register the Raindrop server under the name "raindrop" and make all of its resources and tools available to your AI assistant.

Development

  • Testing: bun test
  • Type checking: bun run type-check
  • Build: bun run build
  • Development: bun run dev
  • Debug: bun run debug or bun run inspector
  • HTTP server: bun run start:http

Contributing

Contributions are welcome! Please open an issue or submit a pull request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

相关推荐

  • Aurity Ltd
  • Create and Publish Business Websites in seconds. AI will gather all the details about your website and generate link to your website.

  • Convincible Ltd
  • You're in a stone cell – can you get out? A classic choose-your-adventure interactive fiction game, based on a meticulously-crafted playbook. With a medieval fantasy setting, infinite choices and outcomes, and dice!

  • John Rafferty
  • Text your favorite pet, after answering 10 questions about their everyday lives!

  • Ian O'Connell
  • Provide players' names or enter Quickstart to start the game!

  • analogchat.com
  • Efficient Spotify assistant for personalized music data.

  • Matthieu Savioux
  • Evaluates language quality of texts, responds with a numerical score between 50-150.

  • seabiscuit.ai
  • Discover A More Robust Business: Craft tailored value proposition statements, develop a comprehensive business model canvas, conduct detailed PESTLE analysis, and gain strategic insights on enhancing business model elements like scalability, cost structure, and market competition strategies. (v1.18)

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

  • av
  • 毫不费力地使用一个命令运行LLM后端,API,前端和服务。

  • metorial
  • 数百个MCP服务器的容器化版本📡📡

  • langgenius
  • Azure
  • 该存储库用于开发Azure MCP服务器,将Azure的功能带给您的代理商。

  • alibaba
  • 1Panel-dev
  • 🔥1Panel提供了直观的Web接口和MCP服务器,用于在Linux服务器上管理网站,文件,容器,数据库和LLMS。

  • caio-moliveira
  • 创建该项目是为了证明我们如何与不同的模型上下文协议(MCP)连接。

  • superiorlu
  • 🤖在AI上收集实用的AI存储库,工具,网站,论文和教程。 实用的ai百宝箱百宝箱

  • Byaidu
  • PDF科学纸翻译带有保留格式的pdf -基于ai完整保留排版的pdf文档全文双语翻译

  • rulego
  • ⛓️Rulego是一种轻巧,高性能,嵌入式,下一代组件编排规则引擎框架。

    Reviews

    5 (0)